Find $\lim\limits_{x\to0^+}x(\lfloor \frac{1}{x}\rfloor+\lfloor \frac{2}{x}\rfloor+\cdots+\lfloor \frac{k}{x}\rfloor), \, k \in \mathbb N$.
Your proof is correct. Here is another way to compute this limit.
Note that $\frac{i}{x}-1 < \left \lfloor \frac{i}{x} \right \rfloor \le \frac{i}{x}$,$\forall i=\overline{1,k}$.
Therefore, $\frac{k(k+1)}{2x} -k < \left \lfloor \frac{1}{x} \right \rfloor + \left \lfloor \frac{2}{x} \right \rfloor +...+ \left \lfloor \frac{k}{x} \right \rfloor \le \frac{k(k+1)}{2x}$.
Hence, $\frac{k(k+1)}{2} -kx < x\left(\left \lfloor \frac{1}{x} \right \rfloor + \left \lfloor \frac{2}{x} \right \rfloor +...+ \left \lfloor \frac{k}{x} \right \rfloor \right) \le \frac{k(k+1)}{2}$.
By the squeeze theorem we get that your limit equals $\frac{k(k+1)}{2}$ as you proved.