Example 1: find the graph is minimal spanig tree or not
#include
#include
#include
#include
using namespace std;
const int MAX = 1e4 + 5;
int id[MAX], nodes, edges;
pair > p[MAX];
void initialize()
{
for(int i = 0;i < MAX;++i)
id[i] = i;
}
int root(int x)
{
while(id[x] != x)
{
id[x] = id[id[x]];
x = id[x];
}
return x;
}
void union1(int x, int y)
{
int p = root(x);
int q = root(y);
id[p] = id[q];
}
long long kruskal(pair > p[])
{
int x, y;
long long cost, minimumCost = 0;
for(int i = 0;i < edges;++i)
{
// Selecting edges one by one in increasing order from the beginning
x = p[i].second.first;
y = p[i].second.second;
cost = p[i].first;
// Check if the selected edge is creating a cycle or not
if(root(x) != root(y))
{
minimumCost += cost;
union1(x, y);
}
}
return minimumCost;
}
int main()
{
int x, y;
long long weight, cost, minimumCost;
initialize();
cin >> nodes >> edges;
for(int i = 0;i < edges;++i)
{
cin >> x >> y >> weight;
p[i] = make_pair(weight, make_pair(x, y));
}
// Sort the edges in the ascending order
sort(p, p + edges);
minimumCost = kruskal(p);
cout << minimumCost << endl;
return 0;
}
Example 2: kruskal's algorithm
#include
using namespace std;
int main()
{
int n = 9;
int mat[9][9] = {
{100,4,100,100,100,100,100,8,100},
{4,100,8,100,100,100,100,100,100},
{100,8,100,7,100,4,100,100,2},
{100,100,7,100,9,14,100,100,100},
{100,100,100,9,100,10,100,100,100},
{100,100,4,14,10,100,2,100,100},
{100,100,100,100,100,2,100,1,6},
{8,100,100,100,100,100,1,100,7},
{100,100,2,100,100,100,6,7,100}};
int parent[n];
int edges[100][3];
int count = 0;
for(int i=0;i edges[j+1][2])
{
int t1=edges[j][0], t2=edges[j][1], t3=edges[j][2];
edges[j][0] = edges[j+1][0];
edges[j][1] = edges[j+1][1];
edges[j][2] = edges[j+1][2];
edges[j+1][0] = t1;
edges[j+1][1] = t2;
edges[j+1][2] = t3;
}
int mst[n-1][2];
int mstVal = 0;
int l = 0;
cout< "<