Find symmetric pairs quickly in numpy

One way is using np.unique with return_index=True and use the result to index the dataframe:

a = np.sort(df.values)
_, ix = np.unique(a, return_index=True, axis=0)

print(df.iloc[ix, :])

    c1  c2
0    0   0
1    0   1
20   2   0
3    0   3
40   4   0
50   5   0
6    0   6
70   7   0
8    0   8
9    0   9
11   1   1
21   2   1
13   1   3
41   4   1
51   5   1
16   1   6
71   7   1
...

You can sort the values, then groupby:

a= np.sort(df.to_numpy(), axis=1)
df.groupby([a[:,0], a[:,1]], as_index=False, sort=False).first()

Option 2: If you have a lot of pairs c1, c2, groupby can be slow. In that case, we can assign new values and filter by drop_duplicates:

a= np.sort(df.to_numpy(), axis=1) 

(df.assign(one=a[:,0], two=a[:,1])   # one and two can be changed
   .drop_duplicates(['one','two'])   # taken from above
   .reindex(df.columns, axis=1)
)

frozenset

mask = pd.Series(map(frozenset, zip(df.c1, df.c2))).duplicated()

df[~mask]