Find the equation of a line which is perpendicular to a given vector and passing through a known point
So, you are given the vector $(2,1,-3)$. Let $(2k,k,-3k)$ be the orthogonal projection of $(1,1,1)$ on $(2,1,-3)$. Then, $(2k-1,k-1,-3k-1)$ and $(2,1,-3)$ are orthogonal, giving: $4k-2+k-1+9k+3=0$ i.e. $k=0$. So, $(0,0,0)$, the origin is the projection. Hence, the line contains the points $(0,0,0)$ and $(1,1,1)$, so its equation is $x=y=z$, if my calculations are correct!