Find The solution to maximize the profit on given data and return the X i (solution)vector for following data; Number of items: n = 8, Total Capacity M=17. Profit P ={10, 15, 8, 7, 3, 15, 8, 27} and weight W = {5, 4, 3, 7, 2, 3, 2, 6}. code example
Example 1: python 0-1 kanpsack
def knapSack(W, wt, val, n):
if n == 0 or W == 0 :
return 0
if (wt[n-1] > W):
return knapSack(W, wt, val, n-1)
else:
return max(val[n-1] + knapSack(W-wt[n-1], wt, val, n-1),
knapSack(W, wt, val, n-1))
val = [50,100,150,200]
wt = [8,16,32,40]
W = 64
n = len(val)
print (knapSack(W, wt, val, n))
Example 2: knapsack algorithm in python
def knapSack(W, wt, val, n):
K = [[0 for x in range(W + 1)] for x in range(n + 1)]
for i in range(n + 1):
for w in range(W + 1):
if i == 0 or w == 0:
K[i][w] = 0
elif wt[i-1] <= w:
K[i][w] = max(val[i-1] + K[i-1][w-wt[i-1]], K[i-1][w])
else:
K[i][w] = K[i-1][w]
return K[n][W]
val = [50,100,150,200]
wt = [8,16,32,40]
W = 64
n = len(val)
print(knapSack(W, wt, val, n))