find the sum to n term of $\frac{1}{1\cdot2\cdot3} + \frac{3}{2\cdot3\cdot4} + \frac{5}{3\cdot4\cdot5} + \frac{7}{4\cdot5\cdot6 } + ... $
HINT:
Note that we have
$$\begin{align} \frac{2k-1}{k(k+1)(k+2)}&=\color{blue}{\frac{3}{k+1}}-\frac{5/2}{k+2}-\frac{1/2}{k}\\\\ &=\color{blue}{\frac12}\left(\color{blue}{\frac{1}{k+1}}-\frac1k\right)+\color{blue}{\frac52}\left(\color{blue}{\frac{1}{k+1}}-\frac{1}{k+2}\right) \end{align}$$