Find volume between two spheres using cylindrical & spherical coordinates
Answer using Cylindrical Coordinates:
Volume of the Shared region =
Equating both the equations for z, you get z = 1/2. Now substitute z = 1/2 in in one of the equations and you get r = $\sqrt{\frac{3}{4}}$.
Now the sphere is shifted by 1 in the z-direction, Hence
Volume of the Shared region = $$\int_{0}^{2\pi} \int_{0}^{\sqrt{\frac{3}{4}}} \int_{1-\sqrt{1-r^2}}^{\sqrt{1-r^2}} rdzdrd\theta$$
$$V=2\pi \int_{0}^{\sqrt{\frac{3}{4}}} [2{\sqrt{1-r^2}}-1] rdr$$
substitute $$u = 1-r^2 ; r = 0 => u = \frac{1}{4} ; r = \sqrt{\frac{3}{4}} => u = 1$$
$$V = 2\pi [-\int_1^{\frac{1}{4}} u^{\frac{1}{2}} du - \int_{0}^{\sqrt{\frac{3}{4}}} rdr]$$
$$V= 2\pi (\frac{2}{3}u^{\frac{3}{2}}) - (\frac{r^2}{2})$$ $$V =2\pi*( \frac{2}{3}(1-\frac{1}{8}) - \frac{3}{8})$$
$$V = 2\pi*(\frac{14}{24} - \frac{3}{8}) = 2\pi*\frac{5}{24} = \frac{5}{12} \pi$$
In spherical coordinates the intersection points $r=\sqrt 3/2$, $z=1/2$ have colatitude $\varphi_0=\arctan\sqrt 3=\pi/3$ and the second sphere is $\rho=2\cos\varphi$: $$ V= \int_0^{2\pi}\int_0^{\pi/3}\int_0^1\rho^2\sin\varphi d\rho d\varphi d\theta+ \int_0^{2\pi}\int_{\pi/3}^{\pi/2}\int_0^{2\cos\varphi}\rho^2\sin\varphi d\rho d\varphi d\theta=2\pi\left({1\over 6}+{1\over 24}\right) $$