Finding count of distinct elements in DataFrame in each column
As of pandas 0.20 we can use nunique
directly on DataFrame
s, i.e.:
df.nunique()
a 4
b 5
c 1
dtype: int64
Other legacy options:
You could do a transpose of the df and then using apply
call nunique
row-wise:
In [205]:
df = pd.DataFrame({'a':[0,1,1,2,3],'b':[1,2,3,4,5],'c':[1,1,1,1,1]})
df
Out[205]:
a b c
0 0 1 1
1 1 2 1
2 1 3 1
3 2 4 1
4 3 5 1
In [206]:
df.T.apply(lambda x: x.nunique(), axis=1)
Out[206]:
a 4
b 5
c 1
dtype: int64
EDIT
As pointed out by @ajcr the transpose is unnecessary:
In [208]:
df.apply(pd.Series.nunique)
Out[208]:
a 4
b 5
c 1
dtype: int64
A Pandas.Series
has a .value_counts()
function that provides exactly what you want to. Check out the documentation for the function.