Finding count of distinct elements in DataFrame in each column

As of pandas 0.20 we can use nunique directly on DataFrames, i.e.:

df.nunique()
a    4
b    5
c    1
dtype: int64

Other legacy options:

You could do a transpose of the df and then using apply call nunique row-wise:

In [205]:
df = pd.DataFrame({'a':[0,1,1,2,3],'b':[1,2,3,4,5],'c':[1,1,1,1,1]})
df

Out[205]:
   a  b  c
0  0  1  1
1  1  2  1
2  1  3  1
3  2  4  1
4  3  5  1

In [206]:
df.T.apply(lambda x: x.nunique(), axis=1)

Out[206]:
a    4
b    5
c    1
dtype: int64

EDIT

As pointed out by @ajcr the transpose is unnecessary:

In [208]:
df.apply(pd.Series.nunique)

Out[208]:
a    4
b    5
c    1
dtype: int64

A Pandas.Series has a .value_counts() function that provides exactly what you want to. Check out the documentation for the function.