Finding eigenvalues of a block matrix

I will answer your question just for the cases $N = 2$ and $N = 3$:

Let

$$ B_2 = \left( \begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array} \right), \quad B_3 = \left( \begin{array}{cccccc} 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 \end{array} \right), $$

then, $\text{Spec}{(B_2)} = {(-2,2,0,0)} \, $ and $\text{Spec}{(B_3)} = (-2,-2,0,0,0,4). $

With the help of numerics, I've been able to show (at least for sufficiently large values of $N$) that the characteristic polynomial is given by:

$$\color{blue}{p(\lambda) =\det{(B_N - \lambda I_{2N})} = (\lambda - 2N +2)(\lambda+2)^{N-1} \lambda^N }$$

which tells you that the only eigenvalues of this kind of matrices are $-2,0,2N-2 \ $ with the corresponding multiplicities given by $p(\lambda)$.

Here is an animation showing the spectrum of the matrices $B_N$ for $N \in (2,30)$:

enter image description here


Here's the same approach in the case we have the $B_N$ matrices defined as:

$$B_N = \begin{bmatrix} C_N & A_N \\ A_N & C_N \end{bmatrix},$$

then:

$$\color{blue}{p(\lambda) =\det{(B_N - \lambda I_{2N})} = \left\{ \begin{array}{ll} \left(\lambda - 2N + 2\right) (\lambda-2)^{N/2}(\lambda+2)^{(N-2)/2} \lambda^{N} & N \text{ even} \\ \left(\lambda - 2N + 2\right) (\lambda-2)^{(N-1)/2}(\lambda+2)^{(N-1)/2} \lambda^{N} & N \text{ odd} \end{array}\right.}$$

which tells you that the only eigenvalues of this kind of matrices are $-2,0,2,2N-2 \ $ with the corresponding multiplicities given by $p(\lambda)$.

Here is another animation showing the spectrum of the matrices $B_N$ for $N \in (2,30)$:

enter image description here

pretty cool!

Hope somebody can shed some light on these results.

Cheers!