Finding Maximum Area of a Rectangle in an Ellipse
Its easier to solve this question using parametric points.
Let one vertex of the rectangle be $(a\cos\theta,b\sin\theta)$.
The other vertices are $(a\cos\theta,-b\sin\theta)$, $(-a\cos\theta,b\sin\theta)$, $(-a\cos\theta,-b\sin\theta)$
The area of rectangle formed is $$A(\theta)=4ab\cos\theta\sin\theta=2ab\sin2\theta$$
Maximum area is $2ab$ and it occurs when $\theta=\frac{\pi}{4}$ (or when $\sin2\theta$ is maximum).
When $\theta=\frac{\pi}{4}$, $x$-coordinate $=a\cos\frac{\pi}{4}=\frac{a}{\sqrt{2}}$
Your mistake is here $$ A'(x) = 4(\sqrt{ b^2 - \frac{b^2x^2}{a^2}}) +\color{red}{\frac12} \times4x\left( (b^2 - \frac{b^2x^2}{a^2})^{\frac{-1}{2}} \times \frac{-2b^2x}{a^2} \right). $$
Let equation of ellipse be
$$ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
Solving for y
$$ y = \sqrt{ b^2 - \frac{b^2x^2}{a^2}} $$
Let area of a rectangle be $4xy$
$$ A = 4xy $$
$$ A = 4x(\sqrt{ b^2 - \frac{b^2x^2}{a^2}}) $$
$$ A'(x) = 4(\sqrt{ b^2 - \frac{b^2x^2}{a^2}}) + 4x\left( (b^2 - \frac{b^2x^2}{a^2})^{\frac{-1}{2}} \times \frac{-b^2x}{a^2} \right) $$
$$ A'(x) = 4\sqrt{ b^2 - \frac{b^2x^2}{a^2}} + \frac{-4x^2b^2}{\sqrt{ b^2 - \frac{b^2x^2}{a^2}}a^2} = 0 $$
$$ 4a^2\left(b^2 - \frac{b^2x^2}{a^2} \right) - 4x^2b^2 = 0 , \sqrt{ b^2 - \frac{b^2x^2}{a^2}a^2} \neq 0 $$
$$ 4a^2\left(b^2 - \frac{b^2x^2}{a^2} \right) - 4x^2b^2 = 0 $$
$$ 4a^2b^2 - 4b^2x^2 - 4x^2b^2 = 0 $$
$$ 4a^2b^2 - 8x^2b^2 = 0 $$
$$ 8x^2b^2 = 4a^2b^2 $$
$$ x^2 = \frac{a^2}{2} $$
$$ x = \frac{a}{\sqrt{2}} , x>0 $$
The mistake is in third step while differentiating.
differentiating $\sqrt x$ will give you $\frac{1}{2\sqrt x}$