Finding percentage in a sub-group using group_by and summarise
And with a bit less code:
df <- data.frame(month=c("Feb-14", "Feb-14", "Feb-14", "Mar-14", "Mar-14", "Mar-14", "Apr-14", "Apr-14", "Apr-14", "May-14"),
type=c("bbb", "ccc", "aaa", "bbb", "ccc", "aaa", "bbb", "ccc", "aaa", "bbb"),
count=c(341, 527, 2674, 811, 1045, 4417, 1178, 1192, 4793, 916))
library(dplyr)
df %>% group_by(month) %>%
mutate(per=paste0(round(count/sum(count)*100, 2), "%")) %>%
ungroup
Since you want to "leave" your data frame untouched you shouldn't use summarise
, mutate
will suffice.
We can use prop.table
to get the proportions within each group.
This can be written in dplyr
:
library(dplyr)
df %>% group_by(month) %>% mutate(per= prop.table(count) * 100)
# month type count per
# <chr> <chr> <dbl> <dbl>
# 1 Feb-14 bbb 341 9.63
# 2 Feb-14 ccc 527 14.9
# 3 Feb-14 aaa 2674 75.5
# 4 Mar-14 bbb 811 12.9
# 5 Mar-14 ccc 1045 16.7
# 6 Mar-14 aaa 4417 70.4
# 7 Apr-14 bbb 1178 16.4
# 8 Apr-14 ccc 1192 16.6
# 9 Apr-14 aaa 4793 66.9
#10 May-14 bbb 916 100
Base R :
df$per <- with(df, ave(count, month, FUN = prop.table) * 100)
and data.table
:
library(data.table)
setDT(df)[, per := prop.table(count) * 100, month]
Try
library(dplyr)
data %>%
group_by(month) %>%
mutate(countT= sum(count)) %>%
group_by(type, add=TRUE) %>%
mutate(per=paste0(round(100*count/countT,2),'%'))
Or make it more simpler without creating additional columns
data %>%
group_by(month) %>%
mutate(per = 100 *count/sum(count)) %>%
ungroup
We could also use left_join
after summarising the sum(count)
by 'month'
Or an option using data.table
.
library(data.table)
setkey(setDT(data), month)[data[, list(count=sum(count)), month],
per:= paste0(round(100*count/i.count,2), '%')][]