Finding shortest repeating cycle in word?

Most easiest one in python:

def pattern(self, s):
    ans=(s+s).find(s,1,-1)
    return len(pat) if ans == -1 else ans

This is an example for PHP:

<?php
function getrepeatedstring($string) {
    if (strlen($string)<2) return $string;
    for($i = 1; $i<strlen($string); $i++) {
        if (substr(str_repeat(substr($string, 0, $i),strlen($string)/$i+1), 0, strlen($string))==$string)
            return substr($string, 0, $i);
    }
    return $string;
}
?>

O(n) solution. Assumes that the entire string must be covered. The key observation is that we generate the pattern and test it, but if we find something along the way that doesn't match, we must include the entire string that we already tested, so we don't have to reobserve those characters.

def pattern(inputv):
    pattern_end =0
    for j in range(pattern_end+1,len(inputv)):

        pattern_dex = j%(pattern_end+1)
        if(inputv[pattern_dex] != inputv[j]):

            pattern_end = j;
            continue

        if(j == len(inputv)-1):
            print pattern_end
            return inputv[0:pattern_end+1];
    return inputv;

Here is a correct O(n) algorithm. The first for loop is the table building portion of KMP. There are various proofs that it always runs in linear time.

Since this question has 4 previous answers, none of which are O(n) and correct, I heavily tested this solution for both correctness and runtime.

def pattern(inputv):
    if not inputv:
        return inputv

    nxt = [0]*len(inputv)
    for i in range(1, len(nxt)):
        k = nxt[i - 1]
        while True:
            if inputv[i] == inputv[k]:
                nxt[i] = k + 1
                break
            elif k == 0:
                nxt[i] = 0
                break
            else:
                k = nxt[k - 1]

    smallPieceLen = len(inputv) - nxt[-1]
    if len(inputv) % smallPieceLen != 0:
        return inputv

    return inputv[0:smallPieceLen]