Finding the mean and standard deviation of a timedelta object in pandas df

Pandas mean() and other aggregation methods support numeric_only=False parameter.

dropped.groupby('bank').mean(numeric_only=False)

Found here: Aggregations for Timedelta values in the Python DataFrame


You need to convert timedelta to some numeric value, e.g. int64 by values what is most accurate, because convert to ns is what is the numeric representation of timedelta:

dropped['new'] = dropped['diff'].values.astype(np.int64)

means = dropped.groupby('bank').mean()
means['new'] = pd.to_timedelta(means['new'])

std = dropped.groupby('bank').std()
std['new'] = pd.to_timedelta(std['new'])

Another solution is to convert values to seconds by total_seconds, but that is less accurate:

dropped['new'] = dropped['diff'].dt.total_seconds()

means = dropped.groupby('bank').mean()