formula for the $n$th derivative of $e^{-1/x^2}$

\begin{align} f'(x) &= \left\{ \begin{array}{ll} e^{-1/x^2} (2/x^3) & \mbox {for } x \ne 0 \\ 0 & \mbox{for } x = 0 \end{array} \right. \\ f''(x) &= \left\{ \begin{array}{ll} e^{-1/x^2} (4/x^6-6/x^4) & \mbox {for } x \ne 0 \\ 0 & \mbox{for } x = 0 \end{array} \right. \\ & \vdots \\ \\ f^{(n)}(x) &= \left\{ \begin{array}{ll} e^{-1/x^2} P_n(x) & \mbox {for } x \ne 0 \\ 0 & \mbox{for } x = 0 \end{array} \right. \end{align} where $P_n(x)$ fulfills the recursive definition \begin{align} P_0(x) & = 1 \\ P_n(x) & = (2/x^3) P_{n-1}(x)+P_{n-1}'(x) \end{align}

Tags:

Calculus