Funny identities
$$\int_0^1\frac{\mathrm{d}x}{x^x}=\sum_{k=1}^\infty \frac1{k^k}$$
$$\left(\sum\limits_{k=1}^n k\right)^2=\sum\limits_{k=1}^nk^3 .$$
The two on the left is not a typo.
$$ \infty! = \sqrt{2 \pi} $$
It comes from the zeta function.