GCC: how is march different from mtune?

If you use -march then GCC will be free to generate instructions that work on the specified CPU, but (typically) not on earlier CPUs in the architecture family.

If you just use -mtune, then the compiler will generate code that works on any of them, but will favour instruction sequences that run fastest on the specific CPU you indicated. e.g. setting loop-unrolling heuristics appropriately for that CPU.


-march=foo implies -mtune=foo unless you also specify a different -mtune. This is one reason why using -march is better than just enabling options like -mavx without doing anything about tuning.

Caveat: -march=native on a CPU that GCC doesn't specifically recognize will still enable new instruction sets that GCC can detect, but will leave -mtune=generic. Use a new enough GCC that knows about your CPU if you want it to make good code.


This is what i've googled up:

The -march=X option takes a CPU name X and allows GCC to generate code that uses all features of X. GCC manual explains exactly which CPU names mean which CPU families and features.

Because features are usually added, but not removed, a binary built with -march=X will run on CPU X, has a good chance to run on CPUs newer than X, but it will almost assuredly not run on anything older than X. Certain instruction sets (3DNow!, i guess?) may be specific to a particular CPU vendor, making use of these will probably get you binaries that don't run on competing CPUs, newer or otherwise.

The -mtune=Y option tunes the generated code to run faster on Y than on other CPUs it might run on. -march=X implies -mtune=X. -mtune=Y will not override -march=X, so, for example, it probably makes no sense to -march=core2 and -mtune=i686 - your code will not run on anything older than core2 anyway, because of -march=core2, so why on Earth would you want to optimize for something older (less featureful) than core2? -march=core2 -mtune=haswell makes more sense: don't use any features beyond what core2 provides (which is still a lot more than what -march=i686 gives you!), but do optimize code for much newer haswell CPUs, not for core2.

There's also -mtune=generic. generic makes GCC produce code that runs best on current CPUs (meaning of generic changes from one version of GCC to another). There are rumors on Gentoo forums that -march=X -mtune=generic produces code that runs faster on X than code produced by -march=X -mtune=X does (or just -march=X, as -mtune=X is implied). No idea if this is true or not.

Generally, unless you know exactly what you need, it seems that the best course is to specify -march=<oldest CPU you want to run on> and -mtune=generic (-mtune=generic is here to counter the implicit -mtune=<oldest CPU you want to run on>, because you probably don't want to optimize for the oldest CPU). Or just -march=native, if you ever going to run only on the same machine you build on.