Generate a list of primes up to a certain number
That sieve posted by George Dontas is a good starting point. Here's a much faster version with running times for 1e6 primes of 0.095s as opposed to 30s for the original version.
sieve <- function(n)
{
n <- as.integer(n)
if(n > 1e8) stop("n too large")
primes <- rep(TRUE, n)
primes[1] <- FALSE
last.prime <- 2L
fsqr <- floor(sqrt(n))
while (last.prime <= fsqr)
{
primes[seq.int(2L*last.prime, n, last.prime)] <- FALSE
sel <- which(primes[(last.prime+1):(fsqr+1)])
if(any(sel)){
last.prime <- last.prime + min(sel)
}else last.prime <- fsqr+1
}
which(primes)
}
Here are some alternate algorithms below coded about as fast as possible in R. They are slower than the sieve but a heck of a lot faster than the questioners original post.
Here's a recursive function that uses mod but is vectorized. It returns for 1e5 almost instantaneously and 1e6 in under 2s.
primes <- function(n){
primesR <- function(p, i = 1){
f <- p %% p[i] == 0 & p != p[i]
if (any(f)){
p <- primesR(p[!f], i+1)
}
p
}
primesR(2:n)
}
The next one isn't recursive and faster again. The code below does primes up to 1e6 in about 1.5s on my machine.
primest <- function(n){
p <- 2:n
i <- 1
while (p[i] <= sqrt(n)) {
p <- p[p %% p[i] != 0 | p==p[i]]
i <- i+1
}
p
}
BTW, the spuRs package has a number of prime finding functions including a sieve of E. Haven't checked to see what the speed is like for them.
And while I'm writing a very long answer... here's how you'd check in R if one value is prime.
isPrime <- function(x){
div <- 2:ceiling(sqrt(x))
!any(x %% div == 0)
}
This is an implementation of the Sieve of Eratosthenes algorithm in R.
sieve <- function(n)
{
n <- as.integer(n)
if(n > 1e6) stop("n too large")
primes <- rep(TRUE, n)
primes[1] <- FALSE
last.prime <- 2L
for(i in last.prime:floor(sqrt(n)))
{
primes[seq.int(2L*last.prime, n, last.prime)] <- FALSE
last.prime <- last.prime + min(which(primes[(last.prime+1):n]))
}
which(primes)
}
sieve(1000000)
Prime Numbers in R
The OP asked to generate all prime numbers below one billion. All of the answers provided thus far are either not capable of doing this, will take a long a time to execute, or currently not available in R (see the answer by @Charles). The package RcppAlgos
(I am the author) is capable of generating the requested output in just over 1 second
using only one thread. It is based off of the segmented sieve of Eratosthenes by Kim Walisch.
RcppAlgos
library(RcppAlgos)
system.time(primeSieve(1e9)) ## using 1 thread
user system elapsed
1.099 0.077 1.176
Using Multiple Threads
And in recent versions (i.e. >= 2.3.0
), we can utilize multiple threads for even faster generation. For example, now we can generate the primes up to 1 billion in under half a second!
system.time(primeSieve(10^9, nThreads = 8))
user system elapsed
2.046 0.048 0.375
Summary of Available Packages in R for Generating Primes
library(schoolmath)
library(primefactr)
library(sfsmisc)
library(primes)
library(numbers)
library(spuRs)
library(randtoolbox)
library(matlab)
## and 'sieve' from @John
Before we begin, we note that the problems pointed out by @Henrik in schoolmath
still exists. Observe:
## 1 is NOT a prime number
schoolmath::primes(start = 1, end = 20)
[1] 1 2 3 5 7 11 13 17 19
## This should return 1, however it is saying that 52
## "prime" numbers less than 10^4 are divisible by 7!!
sum(schoolmath::primes(start = 1, end = 10^4) %% 7L == 0)
[1] 52
The point is, don't use schoolmath
for generating primes at this point (no offense to the author... In fact, I have filed an issue with the maintainer).
Let's look at randtoolbox
as it appears to be incredibly efficient. Observe:
library(microbenchmark)
## the argument for get.primes is for how many prime numbers you need
## whereas most packages get all primes less than a certain number
microbenchmark(priRandtoolbox = get.primes(78498),
priRcppAlgos = RcppAlgos::primeSieve(10^6), unit = "relative")
Unit: relative
expr min lq mean median uq max neval
priRandtoolbox 1.00000 1.00000 1.000000 1.000000 1.000000 1.0000000 100
priRcppAlgos 12.79832 12.55065 6.493295 7.355044 7.363331 0.3490306 100
A closer look reveals that it is essentially a lookup table (found in the file randtoolbox.c
from the source code).
#include "primes.h"
void reconstruct_primes()
{
int i;
if (primeNumber[2] == 1)
for (i = 2; i < 100000; i++)
primeNumber[i] = primeNumber[i-1] + 2*primeNumber[i];
}
Where primes.h
is a header file that contains an array of "halves of differences between prime numbers". Thus, you will be limited by the number of elements in that array for generating primes (i.e. the first one hundred thousand primes). If you are only working with smaller primes (less than 1,299,709
(i.e. the 100,000th prime)) and you are working on a project that requires the nth
prime, randtoolbox
is the way to go.
Below, we perform benchmarks on the rest of the packages.
Primes up to One Million
microbenchmark(priRcppAlgos = RcppAlgos::primeSieve(10^6),
priNumbers = numbers::Primes(10^6),
priSpuRs = spuRs::primesieve(c(), 2:10^6),
priPrimes = primes::generate_primes(1, 10^6),
priPrimefactr = primefactr::AllPrimesUpTo(10^6),
priSfsmisc = sfsmisc::primes(10^6),
priMatlab = matlab::primes(10^6),
priJohnSieve = sieve(10^6),
unit = "relative")
Unit: relative
expr min lq mean median uq max neval
priRcppAlgos 1.000000 1.00000 1.00000 1.000000 1.00000 1.00000 100
priNumbers 21.550402 23.19917 26.67230 23.140031 24.56783 53.58169 100
priSpuRs 232.682764 223.35847 233.65760 235.924538 236.09220 212.17140 100
priPrimes 46.591868 43.64566 40.72524 39.106107 39.60530 36.47959 100
priPrimefactr 39.609560 40.58511 42.64926 37.835497 38.89907 65.00466 100
priSfsmisc 9.271614 10.68997 12.38100 9.761438 11.97680 38.12275 100
priMatlab 21.756936 24.39900 27.08800 23.433433 24.85569 49.80532 100
priJohnSieve 10.630835 11.46217 12.55619 10.792553 13.30264 38.99460 100
Primes up to Ten Million
microbenchmark(priRcppAlgos = RcppAlgos::primeSieve(10^7),
priNumbers = numbers::Primes(10^7),
priSpuRs = spuRs::primesieve(c(), 2:10^7),
priPrimes = primes::generate_primes(1, 10^7),
priPrimefactr = primefactr::AllPrimesUpTo(10^7),
priSfsmisc = sfsmisc::primes(10^7),
priMatlab = matlab::primes(10^7),
priJohnSieve = sieve(10^7),
unit = "relative", times = 20)
Unit: relative
expr min lq mean median uq max neval
priRcppAlgos 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 20
priNumbers 30.57896 28.91780 31.26486 30.47751 29.81762 40.43611 20
priSpuRs 533.99400 497.20484 490.39989 494.89262 473.16314 470.87654 20
priPrimes 125.04440 114.71349 112.30075 113.54464 107.92360 103.74659 20
priPrimefactr 52.03477 50.32676 52.28153 51.72503 52.32880 59.55558 20
priSfsmisc 16.89114 16.44673 17.48093 16.64139 18.07987 22.88660 20
priMatlab 30.13476 28.30881 31.70260 30.73251 32.92625 41.21350 20
priJohnSieve 18.25245 17.95183 19.08338 17.92877 18.35414 32.57675 20
Primes up to One Hundred Million
For the next two benchmarks, we only consider RcppAlgos
, numbers
, sfsmisc
, matlab
, and the sieve
function by @John.
microbenchmark(priRcppAlgos = RcppAlgos::primeSieve(10^8),
priNumbers = numbers::Primes(10^8),
priSfsmisc = sfsmisc::primes(10^8),
priMatlab = matlab::primes(10^8),
priJohnSieve = sieve(10^8),
unit = "relative", times = 20)
Unit: relative
expr min lq mean median uq max neval
priRcppAlgos 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 20
priNumbers 35.64097 33.75777 32.83526 32.25151 31.74193 31.95457 20
priSfsmisc 21.68673 20.47128 20.01984 19.65887 19.43016 19.51961 20
priMatlab 35.34738 33.55789 32.67803 32.21343 31.56551 31.65399 20
priJohnSieve 23.28720 22.19674 21.64982 21.27136 20.95323 21.31737 20
Primes up to One Billion
N.B. We must remove the condition if(n > 1e8) stop("n too large")
in the sieve
function.
## See top section
## system.time(primeSieve(10^9))
## user system elapsed
## 1.099 0.077 1.176 ## RcppAlgos single-threaded
## gc()
system.time(matlab::primes(10^9))
user system elapsed
31.780 12.456 45.549 ## ~39x slower than RcppAlgos
## gc()
system.time(numbers::Primes(10^9))
user system elapsed
32.252 9.257 41.441 ## ~35x slower than RcppAlgos
## gc()
system.time(sieve(10^9))
user system elapsed
26.266 3.906 30.201 ## ~26x slower than RcppAlgos
## gc()
system.time(sfsmisc::primes(10^9))
user system elapsed
24.292 3.389 27.710 ## ~24x slower than RcppAlgos
From these comparison, we see that RcppAlgos
scales much better as n gets larger.
_________________________________________________________
| | 1e6 | 1e7 | 1e8 | 1e9 |
| |---------|----------|-----------|-----------
| RcppAlgos | 1.00 | 1.00 | 1.00 | 1.00 |
| sfsmisc | 9.76 | 16.64 | 19.66 | 23.56 |
| JohnSieve | 10.79 | 17.93 | 21.27 | 25.68 |
| numbers | 23.14 | 30.48 | 32.25 | 34.86 |
| matlab | 23.43 | 30.73 | 32.21 | 38.73 |
---------------------------------------------------------
The difference is even more dramatic when we utilize multiple threads:
microbenchmark(ser = primeSieve(1e6),
par = primeSieve(1e6, nThreads = 8), unit = "relative")
Unit: relative
expr min lq mean median uq max neval
ser 1.741342 1.492707 1.481546 1.512804 1.432601 1.275733 100
par 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
microbenchmark(ser = primeSieve(1e7),
par = primeSieve(1e7, nThreads = 8), unit = "relative")
Unit: relative
expr min lq mean median uq max neval
ser 2.632054 2.50671 2.405262 2.418097 2.306008 2.246153 100
par 1.000000 1.00000 1.000000 1.000000 1.000000 1.000000 100
microbenchmark(ser = primeSieve(1e8),
par = primeSieve(1e8, nThreads = 8), unit = "relative", times = 20)
Unit: relative
expr min lq mean median uq max neval
ser 2.914836 2.850347 2.761313 2.709214 2.755683 2.438048 20
par 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 20
microbenchmark(ser = primeSieve(1e9),
par = primeSieve(1e9, nThreads = 8), unit = "relative", times = 10)
Unit: relative
expr min lq mean median uq max neval
ser 3.081841 2.999521 2.980076 2.987556 2.961563 2.841023 10
par 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 10
And multiplying the table above by the respective median times for the serial results:
_____________________________________________________________
| | 1e6 | 1e7 | 1e8 | 1e9 |
| |---------|----------|-----------|-----------
| RcppAlgos-Par | 1.00 | 1.00 | 1.00 | 1.00 |
| RcppAlgos-Ser | 1.51 | 2.42 | 2.71 | 2.99 |
| sfsmisc | 14.76 | 40.24 | 53.26 | 70.39 |
| JohnSieve | 16.32 | 43.36 | 57.62 | 76.72 |
| numbers | 35.01 | 73.70 | 87.37 | 104.15 |
| matlab | 35.44 | 74.31 | 87.26 | 115.71 |
-------------------------------------------------------------
Primes Over a Range
microbenchmark(priRcppAlgos = RcppAlgos::primeSieve(10^9, 10^9 + 10^6),
priNumbers = numbers::Primes(10^9, 10^9 + 10^6),
priPrimes = primes::generate_primes(10^9, 10^9 + 10^6),
unit = "relative", times = 20)
Unit: relative
expr min lq mean median uq max neval
priRcppAlgos 1.0000 1.0000 1.000 1.0000 1.0000 1.0000 20
priNumbers 115.3000 112.1195 106.295 110.3327 104.9106 81.6943 20
priPrimes 983.7902 948.4493 890.243 919.4345 867.5775 708.9603 20
Primes up to 10 billion in Under 6 Seconds
## primes less than 10 billion
system.time(tenBillion <- RcppAlgos::primeSieve(10^10, nThreads = 8))
user system elapsed
26.077 2.063 5.602
length(tenBillion)
[1] 455052511
## Warning!!!... Large object created
tenBillionSize <- object.size(tenBillion)
print(tenBillionSize, units = "Gb")
3.4 Gb
Primes Over a Range of Very Large Numbers:
Prior to version 2.3.0
, we were simply using the same algorithm for numbers of every magnitude. This is okay for smaller numbers when most of the sieving primes have at least one multiple in each segment (Generally, the segment size is limited by the size of L1 Cache ~32KiB
). However, when we are dealing with larger numbers, the sieving primes will contain many numbers that will have fewer than one multiple per segment. This situation creates a lot of overhead, as we are performing many worthless checks that pollutes the cache. Thus, we observe much slower generation of primes when the numbers are very large. Observe for version 2.2.0
(See Installing older version of R package):
## Install version 2.2.0
## packageurl <- "http://cran.r-project.org/src/contrib/Archive/RcppAlgos/RcppAlgos_2.2.0.tar.gz"
## install.packages(packageurl, repos=NULL, type="source")
system.time(old <- RcppAlgos::primeSieve(1e15, 1e15 + 1e9))
user system elapsed
7.932 0.134 8.067
And now using the cache friendly improvement originally developed by Tomás Oliveira, we see drastic improvements:
## Reinstall current version from CRAN
## install.packages("RcppAlgos"); library(RcppAlgos)
system.time(cacheFriendly <- primeSieve(1e15, 1e15 + 1e9))
user system elapsed
2.258 0.166 2.424 ## Over 3x faster than older versions
system.time(primeSieve(1e15, 1e15 + 1e9, nThreads = 8))
user system elapsed
4.852 0.780 0.911 ## Over 8x faster using multiple threads
Take Away
- There are many great packages available for generating primes
- If you are looking for speed in general, there is no match to
RcppAlgos::primeSieve
, especially for larger numbers. - If you are working with small primes, look no further than
randtoolbox::get.primes
. - If you need primes in a range, the packages
numbers
,primes
, &RcppAlgos
are the way to go. - The importance of good programming practices cannot be overemphasized (e.g. vectorization, using correct data types, etc.). This is most aptly demonstrated by the pure base R solution provided by @John. It is concise, clear, and very efficient.