Generate all unique substrings for given string
As other posters have said, there are potentially O(n^2) substrings for a given string, so printing them out cannot be done faster than that. However there exists an efficient representation of the set that can be constructed in linear time: the suffix tree.
There is no way to do this faster than O(n2) because there are a total of O(n2) substrings in a string, so if you have to generate them all, their number will be n(n + 1) / 2
in the worst case, hence the upper lower bound of O(n2) Ω(n2).
First one is brute force which has complexity O(N^3) which could be brought down to O(N^2 log(N)) Second One using HashSet which has Complexity O(N^2) Third One using LCP by initially finding all the suffix of a given string which has the worst case O(N^2) and best case O(N Log(N)).
First Solution:-
import java.util.Scanner;
public class DistinctSubString {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
System.out.print("Enter The string");
String s = in.nextLine();
long startTime = System.currentTimeMillis();
int L = s.length();
int N = L * (L + 1) / 2;
String[] Comb = new String[N];
for (int i = 0, p = 0; i < L; ++i) {
for (int j = 0; j < (L - i); ++j) {
Comb[p++] = s.substring(j, i + j + 1);
}
}
/*
* for(int j=0;j<N;++j) { System.out.println(Comb[j]); }
*/
boolean[] val = new boolean[N];
for (int i = 0; i < N; ++i)
val[i] = true;
int counter = N;
int p = 0, start = 0;
for (int i = 0, j; i < L; ++i) {
p = L - i;
for (j = start; j < (start + p); ++j) {
if (val[j]) {
//System.out.println(Comb[j]);
for (int k = j + 1; k < start + p; ++k) {
if (Comb[j].equals(Comb[k])) {
counter--;
val[k] = false;
}
}
}
}
start = j;
}
System.out.println("Substrings are " + N
+ " of which unique substrings are " + counter);
long endTime = System.currentTimeMillis();
System.out.println("It took " + (endTime - startTime) + " milliseconds");
}
}
Second Solution:-
import java.util.*;
public class DistictSubstrings_usingHashTable {
public static void main(String args[]) {
// create a hash set
Scanner in = new Scanner(System.in);
System.out.print("Enter The string");
String s = in.nextLine();
int L = s.length();
long startTime = System.currentTimeMillis();
Set<String> hs = new HashSet<String>();
// add elements to the hash set
for (int i = 0; i < L; ++i) {
for (int j = 0; j < (L - i); ++j) {
hs.add(s.substring(j, i + j + 1));
}
}
System.out.println(hs.size());
long endTime = System.currentTimeMillis();
System.out.println("It took " + (endTime - startTime) + " milliseconds");
}
}
Third Solution:-
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
public class LCPsolnFroDistinctSubString {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
System.out.println("Enter Desired String ");
String string = br.readLine();
int length = string.length();
String[] arrayString = new String[length];
for (int i = 0; i < length; ++i) {
arrayString[i] = string.substring(length - 1 - i, length);
}
Arrays.sort(arrayString);
for (int i = 0; i < length; ++i)
System.out.println(arrayString[i]);
long num_substring = arrayString[0].length();
for (int i = 0; i < length - 1; ++i) {
int j = 0;
for (; j < arrayString[i].length(); ++j) {
if (!((arrayString[i].substring(0, j + 1)).equals((arrayString)[i + 1]
.substring(0, j + 1)))) {
break;
}
}
num_substring += arrayString[i + 1].length() - j;
}
System.out.println("unique substrings = " + num_substring);
}
}
Fourth Solution:-
public static void printAllCombinations(String soFar, String rest) {
if(rest.isEmpty()) {
System.out.println(soFar);
} else {
printAllCombinations(soFar + rest.substring(0,1), rest.substring(1));
printAllCombinations(soFar , rest.substring(1));
}
}
Test case:- printAllCombinations("", "abcd");