Generate Friedman numbers
Python 2.7 - 380 378 372 371 367 363 357 354 352 348 336 chars
Just a simple brute force search.
from itertools import*
s=lambda x:[x]['1'>x>'0':]+['(%s%s%s)'%f for i in range(1,len(x))for f in product(s(x[:i]),'*/-+^',s(x[i:]))]
def E(e):
try:return eval(e.replace("^","**"))
except:0
A={i:e for i in range(input(),input()+1)for x in permutations(`i`)for e in s("".join(x))[x>='1':]if E(e)==i}
print len(A)
for v in A:print v,A[v]
Example run:
1
300
9
128 (2^(8-1))
289 ((9+8)^2)
216 (6^(1+2))
121 (11^2)
153 (3*51)
25 (5^2)
125 (5^(2+1))
126 (6*21)
127 ((2^7)-1)
Explanation:
s(x)
is a function that takes a string containing a sequence of digits and returns all expressions using those digits in that order.
[x]['1'>x>'0':]
evaluates to a list containing x if x is '0' or a sequence of digits not starting with '0'; otherwise, it evaluates to an empty list. Basically this handles the case where I join all the digits together.
['(%s%s%s)'%f for i in range(1,len(x))for f in product(s(x[:i]),'*/-+^',s(x[i:]))]
basically partitions x into two parts (both being of non-zero length), calls s() on each part and joins all the results together with some operator between them, by using product().
E(e)
is basically a safe eval. It returns the value of e if e is valid and None otherwise.
A={i:e for i in range(input(),input()+1)for x in permutations(`i`)for e in s("".join(x))[x>='1':]if E(e)==i}
Basically this code tries all the numbers in the range, permutes their digits and tests each expression s() generates for that permutation, ignoring the first expression if x doesn't start with '0', because if x doesn't start with '0' then the first expression will just be x.
Alternate version - 397 chars
Here is my code if you are required to use fractions:
from fractions import*
from itertools import*
s=lambda x:["Fraction(%s)"%x]['1'>x>'0':]+['(%s%s%s)'%f for i in range(1,len(x))for f in product(s(x[:i]),'*/-+^',s(x[i:]))]
def E(e):
try:return eval(e.replace("^","**"))
except:0
A={i:e for i in range(input(),input()+1)for x in permutations(`i`)for e in s("".join(x))[x>='1':]if E(e)==i}
print len(A)
for v in A:print v,A[v].replace("Fraction","")
Python3 (436) (434) (443)
It was hard. I can spare some characters if I make output more native.
from itertools import*
r={};k=product;m=map
q=lambda n,h=1:["("+i+c+j+")"for(i,j),c in k(chain(*[k(*m(q,f))for f in sum(([(x[:q],x[q:])for q in range(1,len(x))]for x in m("".join,permutations(n))),[])]),list("+-*/^")+[""]*h)]if 1<len(n)else[n]*h
a,b=m(int,m(input,"nm"))
for i,j in chain(*[k(q(str(n),0),[n])for n in range(a,b+1)]):
try:exec("if eval(%r)==j:r[j]=i"%i.replace("^","**"))
except:0
print(len(r))
for j,i in r.items():print(i,j)
Output
n100
m200
6
(2^(8-1)) 128
(3*(51)) 153
((11)^2) 121
(5^(1+2)) 125
(6*(21)) 126
((2^7)-1) 127
Ruby, 456 438 408 390 370 349 344 334 bytes
g={}
f=->a,b{a.permutation(b).to_a.uniq.flatten.each_slice b}
F,T=$*
([F.to_i,10].max..T.to_i).map{|c|f[a="#{c}".split(''),v=a.size].map{|m|f[[?+,?-,?*,?/,'','**'],v-1].map{|w|(d=(s=m.zip(w)*'').size)==v&&next
0.upto(d){|y|y.upto(d+1){|u|begin(r=eval t="#{s}".insert(y,?().insert(u,?)))==c&&g[r]=t
rescue Exception
end}}}}}
p g.size,g
Output:
% ruby ./friedman-numbers.rb 1 300
9
{25=>"(5)**2", 121=>"(11)**2", 125=>"5**(2+1)", 126=>"(6)*21", 127=>"(2)**7-1", 128=>"2**(8-1)", 153=>"(3)*51", 216=>"6**(1+2)", 289=>"(9+8)**2"}
Also it works relatively fast for larger numbers:
% time ruby friedman-numbers.rb 3863 3864
1
{3864=>"(6**4-8)*3"}
ruby friedman-numbers.rb 3863 3864 14.05s user 0.17s system 99% cpu 14.224 total