Generating all permutations of a given string

public static void permutation(String str) { 
    permutation("", str); 
}

private static void permutation(String prefix, String str) {
    int n = str.length();
    if (n == 0) System.out.println(prefix);
    else {
        for (int i = 0; i < n; i++)
            permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
    }
}

(via Introduction to Programming in Java)


Here is my solution that is based on the idea of the book "Cracking the Coding Interview" (P54):

/**
 * List permutations of a string.
 * 
 * @param s the input string
 * @return  the list of permutations
 */
public static ArrayList<String> permutation(String s) {
    // The result
    ArrayList<String> res = new ArrayList<String>();
    // If input string's length is 1, return {s}
    if (s.length() == 1) {
        res.add(s);
    } else if (s.length() > 1) {
        int lastIndex = s.length() - 1;
        // Find out the last character
        String last = s.substring(lastIndex);
        // Rest of the string
        String rest = s.substring(0, lastIndex);
        // Perform permutation on the rest string and
        // merge with the last character
        res = merge(permutation(rest), last);
    }
    return res;
}

/**
 * @param list a result of permutation, e.g. {"ab", "ba"}
 * @param c    the last character
 * @return     a merged new list, e.g. {"cab", "acb" ... }
 */
public static ArrayList<String> merge(ArrayList<String> list, String c) {
    ArrayList<String> res = new ArrayList<>();
    // Loop through all the string in the list
    for (String s : list) {
        // For each string, insert the last character to all possible positions
        // and add them to the new list
        for (int i = 0; i <= s.length(); ++i) {
            String ps = new StringBuffer(s).insert(i, c).toString();
            res.add(ps);
        }
    }
    return res;
}

Running output of string "abcd":

  • Step 1: Merge [a] and b: [ba, ab]

  • Step 2: Merge [ba, ab] and c: [cba, bca, bac, cab, acb, abc]

  • Step 3: Merge [cba, bca, bac, cab, acb, abc] and d: [dcba, cdba, cbda, cbad, dbca, bdca, bcda, bcad, dbac, bdac, badc, bacd, dcab, cdab, cadb, cabd, dacb, adcb, acdb, acbd, dabc, adbc, abdc, abcd]


Use recursion.

  • Try each of the letters in turn as the first letter and then find all the permutations of the remaining letters using a recursive call.
  • The base case is when the input is an empty string the only permutation is the empty string.

Tags:

Algorithm

Java