Generic maximum/minimum function for complex numbers
In Julia 1.7 you can use argmax
julia> a = rand(ComplexF64,4)
4-element Vector{ComplexF64}:
0.3443509906876845 + 0.49984979589871426im
0.1658370274750809 + 0.47815764287341156im
0.4084798173736195 + 0.9688268736875587im
0.47476987432458806 + 0.13651720575229853im
julia> argmax(abs2, a)
0.4084798173736195 + 0.9688268736875587im
Since it will take some time to get to 1.7, you can use the following analog
maxby(f, iter) = reduce(iter) do x, y
f(x) > f(y) ? x : y
end
julia> maxby(abs2, a)
0.4084798173736195 + 0.9688268736875587im
UPD: slightly more efficient way to find such maximum is to use something like
function maxby(f, iter; default = zero(eltype(iter)))
isempty(iter) && return default
res, rest = Iterators.peel(iter)
fa = f(res)
for x in rest
fx = f(x)
if fx > fa
res = x
fa = fx
end
end
return res
end
According to octave's documentation (which presumably mimics matlab's behaviour):
For complex arguments, the magnitude of the elements are used for
comparison. If the magnitudes are identical, then the results are
ordered by phase angle in the range (-pi, pi]. Hence,
max ([-1 i 1 -i])
=> -1
because all entries have magnitude 1, but -1 has the largest phase
angle with value pi.
Therefore, if you'd like to mimic matlab/octave functionality exactly, then based on this logic, I'd construct a 'max' function for complex numbers as:
function compmax( CArray )
Absmax = CArray[ abs.(CArray) .== maximum( abs.(CArray)) ]
Totalmax = Absmax[ angle.(Absmax) .== maximum(angle.(Absmax)) ]
return Totalmax[1]
end
(adding appropriate typing as desired).
Examples:
Nums0 = [ 1, 2, 3 + 4im, 3 - 4im, 5 ]; compmax( Nums0 )
# 1-element Array{Complex{Int64},1}:
# 3 + 4im
Nums1 = [ -1, im, 1, -im ]; compmax( Nums1 )
# 1-element Array{Complex{Int64},1}:
# -1 + 0im
If this was a code for my computations, I would have made my life much simpler by:
julia> Main.isless(u1::ComplexF64, u2::ComplexF64) = abs2(u1) < abs2(u2)
julia> maximum(rand(ComplexF64, 10))
0.9876138798492835 + 0.9267321874614858im
This adds a new implementation for an existing method in Main
. Therefore for a library code it is not an elegant idea, but it will you get where you need it with the least effort.