Get list of data types from schema in Apache Spark
Since the question title is not python-specific, I'll add scala
version here:
val types = df.schema.fields.map(f => f.dataType)
It will result in an array of org.apache.spark.sql.types.DataType
.
Use schema.dtypes
scala> val df = Seq(("ABC",10,20.4)).toDF("a","b","c")
df: org.apache.spark.sql.DataFrame = [a: string, b: int ... 1 more field]
scala>
scala> df.printSchema
root
|-- a: string (nullable = true)
|-- b: integer (nullable = false)
|-- c: double (nullable = false)
scala> df.dtypes
res2: Array[(String, String)] = Array((a,StringType), (b,IntegerType), (c,DoubleType))
scala> df.dtypes.map(_._2).toSet
res3: scala.collection.immutable.Set[String] = Set(StringType, IntegerType, DoubleType)
scala>
Here's a suggestion:
df = sqlContext.createDataFrame([('a', 1)])
types = [f.dataType for f in df.schema.fields]
types
> [StringType, LongType]
Reference:
- pyspark.sql.types.StructType
- pyspark.sql.types.StructField