get previous row's value and calculate new column pandas python
The way to get the previous is using the shift method:
In [11]: df1.change.shift(1)
Out[11]:
0 NaT
1 2014-03-08
2 2014-04-08
3 2014-05-08
4 2014-06-08
Name: change, dtype: datetime64[ns]
Now you can subtract these columns. Note: This is with 0.13.1 (datetime stuff has had a lot of work recently, so YMMV with older versions).
In [12]: df1.change.shift(1) - df1.change
Out[12]:
0 NaT
1 -31 days
2 -30 days
3 -31 days
4 0 days
Name: change, dtype: timedelta64[ns]
You can just apply this to each case/group:
In [13]: df.groupby('case')['change'].apply(lambda x: x.shift(1) - x)
Out[13]:
0 NaT
1 -31 days
2 -30 days
3 -31 days
4 NaT
dtype: timedelta64[ns]