Get the surface area of a polyhedron (3D object)

Since you say it's a polyhedron, stacker's link (http://softsurfer.com/Archive/algorithm_0101/algorithm_0101.htm) is applicable.

Here's my approximate C# translation of the C code for your situation:

// NOTE: The original code contained the following notice:
// ---------------------------------------
// Copyright 2000 softSurfer, 2012 Dan Sunday
// This code may be freely used and modified for any purpose
// providing that this copyright notice is included with it.
// iSurfer.org makes no warranty for this code, and cannot be held
// liable for any real or imagined damage resulting from its use.
// Users of this code must verify correctness for their application.
// ---------------------------------------
// area3D_Polygon(): computes the area of a 3D planar polygon
//    Input:  int n = the number of vertices in the polygon
//            Point[] V = an array of n+2 vertices in a plane
//                       with V[n]=V[0] and V[n+1]=V[1]
//            Point N = unit normal vector of the polygon's plane
//    Return: the (float) area of the polygon
static float
area3D_Polygon( int n, Point3D[] V, Point3D N )
{
    float area = 0;
    float an, ax, ay, az;  // abs value of normal and its coords
    int   coord;           // coord to ignore: 1=x, 2=y, 3=z
    int   i, j, k;         // loop indices

    // select largest abs coordinate to ignore for projection
    ax = (N.x>0 ? N.x : -N.x);     // abs x-coord
    ay = (N.y>0 ? N.y : -N.y);     // abs y-coord
    az = (N.z>0 ? N.z : -N.z);     // abs z-coord

    coord = 3;                     // ignore z-coord
    if (ax > ay) {
        if (ax > az) coord = 1;    // ignore x-coord
    }
    else if (ay > az) coord = 2;   // ignore y-coord

    // compute area of the 2D projection
    for (i=1, j=2, k=0; i<=n; i++, j++, k++)
        switch (coord) {
        case 1:
            area += (V[i].y * (V[j].z - V[k].z));
            continue;
        case 2:
            area += (V[i].x * (V[j].z - V[k].z));
            continue;
        case 3:
            area += (V[i].x * (V[j].y - V[k].y));
            continue;
        }

    // scale to get area before projection
    an = Math.Sqrt( ax*ax + ay*ay + az*az);  // length of normal vector
    switch (coord) {
    case 1:
        area *= (an / (2*ax));
        break;
    case 2:
        area *= (an / (2*ay));
        break;
    case 3:
        area *= (an / (2*az));
        break;
    }
    return area;
}

Do you mean Area of 3D planar polygons?

  1. http://softsurfer.com/Archive/algorithm_0101/algorithm_0101.htm
  2. http://local.wasp.uwa.edu.au/~pbourke/geometry/area3d/
  3. http://thebuildingcoder.typepad.com/blog/2008/12/3d-polygon-areas.html

I upvoted a few answers which I think are correct. But I think the simplest way to do it-- regardless of whether it's in 2D or 3D, is to use the following formula:

area = sum(V(i+1) × V(i))/2;

Where × is the vector cross.

The code to do this is:

    public double Area(List<Point3D> PtList)
    {

        int nPts = PtList.Count;
        Point3D a;
        int j = 0;

        for (int i = 0; i < nPts; ++i)
        {
            j = (i + 1) % nPts;
            a += Point3D.Cross(PtList[i], PtList[j]);
        }
        a /= 2;
        return Point3D.Distance(a,default(Point3D));
    }

    public static Point3D Cross(Point3D v0, Point3D v1)
    {
        return new Point3D(v0.Y * v1.Z - v0.Z * v1.Y,
            v0.Z * v1.X - v0.X * v1.Z,
            v0.X * v1.Y - v0.Y * v1.X);
    }

Note that the solution doesn't depend on projection to x-plane, which I think is clunky.

What do you think?