Graphics of Ebbinghaus illusion
I would create your graphics illusion with a single Graphics
expression; like so
With[
{color1 = RGBColor[0.569, 0.643, 0.725],
color2 = RGBColor[0.902, 0.498, 0.224]},
Module[{group1, group2},
group1 =
{color2, Disk[{0, 0}, 0.5],
color1, Disk[{2.1, 0}, 1],
Disk[{2.1 Sin[Pi/6], 2.1 Cos[Pi/6]}, 1],
Disk[{-2.1, 0}, 1],
Disk[{-2.1 Sin[Pi/6], 2.1 Cos[Pi/6]}, 1],
Disk[{2.1 Sin[Pi/6], -2.1 Cos[Pi/6]}, 1],
Disk[{-2.1 Sin[Pi/6], -2.1 Cos[Pi/6]}, 1]};
group2 =
{color2, Disk[{0, 0}, 0.5],
color, Disk[{Sin[Pi/4], Cos[Pi/4]}, 0.3],
Disk[{Sin[2 Pi/4], Cos[(2 Pi)/4]}, 0.3],
Disk[{Sin[3 Pi/4], Cos[3 Pi/4]}, 0.3],
Disk[{Sin[4 Pi/4], Cos[4 Pi/4]}, 0.3],
Disk[{Sin[(5 Pi)/4], Cos[(5 Pi)/4]}, 0.3],
Disk[{Sin[6 Pi/4], Cos[(6 Pi)/4]}, 0.3],
Disk[{Sin[7 Pi/4], Cos[(7 Pi)/4]}, 0.3],
Disk[{Sin[8 Pi/4], Cos[(8 Pi)/4]}, 0.3]};
Graphics[{group1, Translate[group2, {5, 0}]}]]]
This guarantees that both groups of disks are created in the a single coordinate system.
With Mathematica V10.1 or later this can simplified by using CirclePoints
to place the outer ring of circles.
With[
{color1 = RGBColor[0.569, 0.643, 0.725],
color2 = RGBColor[0.902, 0.498, 0.224],
offset = {5, 0},
r = .5, r1 = 1., r2 = .3, R1 = 2.1, R2 = .9},
Module[{group1, group2},
group1 =
{color2, Disk[{0, 0}, r],
color1, Disk[#, r1] & /@ CirclePoints[R1, 6]};
group2 =
{color2, Disk[offset, r],
color1, Disk[#, r2] & /@ CirclePoints[offset, {R2, 0}, 8]};
Graphics[{group1, group2}]]]
Example
Code
color = RGBColor[0.5686314191548986`, 0.6431257328883857`,
0.7255014941881315`]
color2 = RGBColor[0.9019616959261525, 0.49803803022437004,
0.2235295987167626]
g1 = Graphics[{color2, Disk[{0, 0}, 0.5], color, Disk[{2.1, 0}, 1],
color, Disk[{2.1 Sin[Pi/6], 2.1 Cos[Pi/6]}, 1], color,
Disk[{-2.1, 0}, 1], color,
Disk[{-2.1 Sin[Pi/6], 2.1 Cos[Pi/6]}, 1], color,
Disk[{2.1 Sin[Pi/6], -2.1 Cos[Pi/6]}, 1], color,
Disk[{-2.1 Sin[Pi/6], -2.1 Cos[Pi/6]}, 1]}, ImageSize -> 200]
g2 = Graphics[{color2, Disk[{0, 0}, 0.5], color,
Disk[{Sin[Pi/4], Cos[Pi/4]}, 0.3], color,
Disk[{Sin[2 Pi/4], Cos[(2 Pi)/4]}, 0.3], color,
Disk[{Sin[3 Pi/4], Cos[3 Pi/4]}, 0.3], color,
Disk[{Sin[4 Pi/4], Cos[4 Pi/4]}, 0.3], color,
Disk[{Sin[(5 Pi)/4], Cos[(5 Pi)/4]}, 0.3], color,
Disk[{Sin[6 Pi/4], Cos[(6 Pi)/4]}, 0.3], color,
Disk[{Sin[7 Pi/4], Cos[(7 Pi)/4]}, 0.3], color,
Disk[{Sin[8 Pi/4], Cos[(8 Pi)/4]}, 0.3]}, ImageSize -> 100]
GraphicsRow[{g1,g2}]
Output
Reference
GraphicsRow
ImageSize
I used code from C.E comment, and it works perfectly!
color = RGBColor[0.5686314191548986`, 0.6431257328883857`,0.7255014941881315`]
color2 = RGBColor[0.9019616959261525, 0.49803803022437004,0.2235295987167626]
g1 = Graphics[{color2, Disk[{0, 0}, 0.5], color, Disk[{2.1, 0}, 1],
color, Disk[{2.1 Sin[Pi/6], 2.1 Cos[Pi/6]}, 1], color,
Disk[{-2.1, 0}, 1], color,
Disk[{-2.1 Sin[Pi/6], 2.1 Cos[Pi/6]}, 1], color,
Disk[{2.1 Sin[Pi/6], -2.1 Cos[Pi/6]}, 1], color,
Disk[{-2.1 Sin[Pi/6], -2.1 Cos[Pi/6]}, 1]}]
g2 = Graphics[{color2, Disk[{0, 0}, 0.5], color,
Disk[{Sin[Pi/4], Cos[Pi/4]}, 0.3], color,
Disk[{Sin[2 Pi/4], Cos[(2 Pi)/4]}, 0.3], color,
Disk[{Sin[3 Pi/4], Cos[3 Pi/4]}, 0.3], color,
Disk[{Sin[4 Pi/4], Cos[4 Pi/4]}, 0.3], color,
Disk[{Sin[(5 Pi)/4], Cos[(5 Pi)/4]}, 0.3], color,
Disk[{Sin[6 Pi/4], Cos[(6 Pi)/4]}, 0.3], color,
Disk[{Sin[7 Pi/4], Cos[(7 Pi)/4]}, 0.3], color,
Disk[{Sin[8 Pi/4], Cos[(8 Pi)/4]}, 0.3]}]
Show[g1, Translate[#, {5, 0}] & /@ g2]