GRH and the rank of elliptic curves
Computation of ranks of elliptic curves relies on descent. The first step of descent is the computation of a finite Selmer group, which in turn uses the computation of the class group of a potentially large number field. This is the step where GRH is used: it allows you to assume that the class group is generated by the set of prime ideals up to a relatively small norm bound, therefore speeding up the computation.