Group a multi-indexed pandas dataframe by one of its levels?
In recent versions of pandas, you can group by multi-index level names similar to columns (i.e. without the level
keyword), allowing you to use both simultaneously.
>>> import pandas as pd
>>> pd.__version__
'1.0.5'
>>> df = pd.DataFrame({
... 'first': ['a', 'a', 'a', 'b', 'b', 'b'],
... 'second': ['x', 'y', 'x', 'z', 'y', 'z'],
... 'column': ['k', 'k', 'l', 'l', 'm', 'n'],
... 'data': [0, 1, 2, 3, 4, 5],
... }).set_index(['first', 'second'])
>>> df.groupby('first').sum()
data
first
a 3
b 12
>>> df.groupby(['second', 'column']).sum()
data
second column
x k 0
l 2
y k 1
m 4
z l 3
n 5
The column and index level names you groupby
must be unique. If you have a column and index level with the same name, you will get a ValueError
when trying to groupby
.
Yes, use the level
parameter. Take a look here. Example:
In [26]: s
first second third
bar doo one 0.404705
two 0.577046
baz bee one -1.715002
two -1.039268
foo bop one -0.370647
two -1.157892
qux bop one -1.344312
two 0.844885
dtype: float64
In [27]: s.groupby(level=['first','second']).sum()
first second
bar doo 0.981751
baz bee -2.754270
foo bop -1.528539
qux bop -0.499427
dtype: float64