handling zeros in pandas DataFrames column divisions in Python

Just for completeness, I would like to add the following way of division that uses DataFrame.apply like:

df.loc[:, 'c'] = df.apply(div('a', 'b'), axis=1)

In full:

In [1]:
df = pd.DataFrame({"a": [1, 2, 0, 1, 5, 0], "b": [0, 10, 20, 30, 50, 0]}).astype('float64')

def div(numerator, denominator):
  return lambda row: 0.0 if row[denominator] == 0 else float(row[numerator]/row[denominator])

df.loc[:, 'c'] = df.apply(div('a', 'b'), axis=1)

Out[1]:
      a     b         c
0   1.0   0.0  0.000000
1   2.0  10.0  0.200000
2   0.0  20.0  0.000000
3   1.0  30.0  0.033333
4   5.0  50.0  0.100000
5   0.0   0.0  0.000000

This solution is slower than the one proposed by Jeff:

df.loc[:, 'c'] = df.apply(div('a', 'b'), axis=1)
# 1.27 ms ± 113 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

df.loc[:, 'c'] = df.a/df.b.replace({ 0 : np.inf })
# 651 µs ± 44.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

You need to work in floats, otherwise you will have integer division, prob not what you want

In [12]: df = pandas.DataFrame({"a": [1, 2, 0, 1, 5], 
                                "b": [0, 10, 20, 30, 50]}).astype('float64')

In [13]: df
Out[13]: 
   a   b
0  1   0
1  2  10
2  0  20
3  1  30
4  5  50

In [14]: df.dtypes
Out[14]: 
a    float64
b    float64
dtype: object

Here's one way

In [15]: x = df.a/df.b

In [16]: x
Out[16]: 
0         inf
1    0.200000
2    0.000000
3    0.033333
4    0.100000
dtype: float64

In [17]: x[np.isinf(x)] = np.nan

In [18]: x
Out[18]: 
0         NaN
1    0.200000
2    0.000000
3    0.033333
4    0.100000
dtype: float64

Here's another way

In [20]: df.a/df.b.replace({ 0 : np.nan })
Out[20]: 
0         NaN
1    0.200000
2    0.000000
3    0.033333
4    0.100000
dtype: float64