Example 1: python code for heap using heapify
#Implementing Heap Using Heapify Method in Python 3
#MaxHeapify,MinHeapify,Ascending_Heapsort,Descending_Heapsort
class heap:
def maxheapify(self,array):
n=len(array)
for i in range(n
self._maxheapify(array,n,i)
def _maxheapify(self,array,n,i):
l=2*i+1
r=2*i+2
if l<n and array[l]>array[i]:
largest=l
else:
largest=i
if r<n and array[r]>array[largest]:
largest=r
if (largest!=i):
array[largest],array[i]=array[i],array[largest]
self._maxheapify(array,n,largest)
def minheapify(self,array):
n = len(array)
for i in range(n
self._minheapify(array,n,i)
def _minheapify(self,array,n,i):
l=2*i+1
r=2*i+2
if l<n and array[l]<array[i]:
smallest = l
else:
smallest = i
if r < n and array[r]<array[smallest]:
smallest = r
if (smallest != i):
array[smallest], array[i] = array[i], array[smallest]
self._minheapify(array, n, smallest)
def descending_heapsort(self,array):
n = len(array)
for i in range(n
self._minheapify(array, n, i)
for i in range(n - 1, 0, -1):
array[0], array[i] = array[i], array[0]
self._minheapify(array, i, 0)
def ascending_heapsort(self,array):
n=len(array)
for i in range(n
self._maxheapify(array,n,i)
for i in range(n-1,0,-1):
array[0],array[i]=array[i],array[0]
self._maxheapify(array,i,0)
b=[550,4520,3,2340,12]
a=heap()
a.maxheapify(b)
print('Max Heapify -->',b)
a.minheapify(b)
print('Min Heapify -->',b)
a.ascending_heapsort(b)
print('Ascending Heap Sort -->',b)
a.descending_heapsort(b)
print('Descending Heap Sort -->',b)
Example 2: heapify down
Heapify down is used when we remove the top element from a heap. Removal of an element is done by swapping the top element with the last element at the bottom of the tree, removing the last element, and then heapfying the new top element down to maintain the heap property. Because this moves down the heap tree, it must perform two comparisons per iteration, with the left child and the right child elements, then swap with the smaller one. Because of this, heapify down is usually more complex to implement than heapify up.