heap sort complexity code example

Example 1: heap sort

// Heap Sort in C
  
  #include 
  
  // Function to swap the the position of two elements
  void swap(int *a, int *b) {
    int temp = *a;
    *a = *b;
    *b = temp;
  }
  
  void heapify(int arr[], int n, int i) {
    // Find largest among root, left child and right child
    int largest = i;
    int left = 2 * i + 1;
    int right = 2 * i + 2;
  
    if (left < n && arr[left] > arr[largest])
      largest = left;
  
    if (right < n && arr[right] > arr[largest])
      largest = right;
  
    // Swap and continue heapifying if root is not largest
    if (largest != i) {
      swap(&arr[i], &arr[largest]);
      heapify(arr, n, largest);
    }
  }
  
  // Main function to do heap sort
  void heapSort(int arr[], int n) {
    // Build max heap
    for (int i = n / 2 - 1; i >= 0; i--)
      heapify(arr, n, i);
  
    // Heap sort
    for (int i = n - 1; i >= 0; i--) {
      swap(&arr[0], &arr[i]);
  
      // Heapify root element to get highest element at root again
      heapify(arr, i, 0);
    }
  }
  
  // Print an array
  void printArray(int arr[], int n) {
    for (int i = 0; i < n; ++i)
      printf("%d ", arr[i]);
    printf("\n");
  }
  
  // Driver code
  int main() {
    int arr[] = {1, 12, 9, 5, 6, 10};
    int n = sizeof(arr) / sizeof(arr[0]);
  
    heapSort(arr, n);
  
    printf("Sorted array is \n");
    printArray(arr, n);
  }

Example 2: heap sort

// @see https://www.youtube.com/watch?v=H5kAcmGOn4Q

function heapify(list, size, index) {
    let largest = index;
    let left = index * 2 + 1;
    let right = left + 1;
    if (left < size && list[left] > list[largest]) {
        largest = left;
    }
    if (right < size && list[right] > list[largest]) {
        largest = right;
    }
    if (largest !== index) {
        [list[index], list[largest]] = [list[largest], list[index]];
        heapify(list, size, largest);
    }
    return list;
}

function heapsort(list) {
    const size = list.length;
    let index = ~~(size / 2 - 1);
    let last = size - 1;
    while (index >= 0) {
        heapify(list, size, --index);
    }
    while (last >= 0) {
        [list[0], list[last]] = [list[last], list[0]];
        heapify(list, --last, 0);
    }
    return list;
}

heapsort([4, 7, 2, 6, 4, 1, 8, 3]);

Example 3: heap sort

void heapify(int arr[], int n, int i) {
  // Find largest among root, left child and right child
  int largest = i;
  int left = 2 * i + 1;
  int right = 2 * i + 2;

  if (left < n && arr[left] > arr[largest])
    largest = left;

  if (right < n && arr[right] > arr[largest])
    largest = right;

    // Swap and continue heapifying if root is not largest
    if (largest != i) {
      swap(&arr[i], &arr[largest]);
      heapify(arr, n, largest);
  }
}

Example 4: heap sort

# Heap Sort in python


  def heapify(arr, n, i):
      # Find largest among root and children
      largest = i
      l = 2 * i + 1
      r = 2 * i + 2
  
      if l < n and arr[i] < arr[l]:
          largest = l
  
      if r < n and arr[largest] < arr[r]:
          largest = r
  
      # If root is not largest, swap with largest and continue heapifying
      if largest != i:
          arr[i], arr[largest] = arr[largest], arr[i]
          heapify(arr, n, largest)
  
  
  def heapSort(arr):
      n = len(arr)
  
      # Build max heap
      for i in range(n//2, -1, -1):
          heapify(arr, n, i)
  
      for i in range(n-1, 0, -1):
          # Swap
          arr[i], arr[0] = arr[0], arr[i]
  
          # Heapify root element
          heapify(arr, i, 0)
  
  
  arr = [1, 12, 9, 5, 6, 10]
  heapSort(arr)
  n = len(arr)
  print("Sorted array is")
  for i in range(n):
      print("%d " % arr[i], end='')

Example 5: Heap Sort

class Sort {
    public void heapSort(int arr[])
    {
        int temp;
 
        for (int i = arr.length / 2 - 1; i >= 0; i--)                //build the heap
        {
            heapify(arr, arr.length, i);
        }
 
        for (int i = arr.length - 1; i > 0; i--)                            //extract elements from the heap
        {
            temp = arr[0];                                                  //move current root to end (since it is the largest)
            arr[0] = arr[i];
            arr[i] = temp;
            heapify(arr, i, 0);                                             //recall heapify to rebuild heap for the remaining elements
        }
    }
 
    void heapify(int arr[], int n, int i)
    {
        int MAX = i; // Initialize largest as root
        int left = 2 * i + 1; //index of the left child of ith node = 2*i + 1
        int right = 2 * i + 2; //index of the right child of ith node  = 2*i + 2
        int temp;

        if (left < n && arr[left] > arr[MAX])            //check if the left child of the root is larger than the root
        {
            MAX = left;
        }
 
        if (right < n && arr[right] > arr[MAX])            //check if the right child of the root is larger than the root
        {
            MAX = right;
        }
 
        if (MAX != i) 
        {                                               //repeat the procedure for finding the largest element in the heap
            temp = arr[i];
            arr[i] = arr[MAX];
            arr[MAX] = temp;
            heapify(arr, n, MAX);
        }
    }
 
    void display(int arr[])                 //display the array
    {  
        for (int i=0; i

Example 6: heap sort name meaning

A sorting algorithm that works by first organizing the data to be sorted into a special type of binary tree called a heap. The heap itself has, by definition, the largest value at the top of the tree.

Tags:

Misc Example