heapify max heap code example
Example 1: heap sort heapify and max heap in binary tree
Implementation of heap sort in C:
#include <stdio.h>
int main()
{
int heap[10], array_size, i, j, c, root, temporary;
printf("\n Enter size of array to be sorted :");
scanf("%d", &array_size);
printf("\n Enter the elements of array : ");
for (i = 0; i < array_size; i++)
scanf("%d", &heap[i]);
for (i = 1; i < array_size; i++)
{
c = i;
do
{
root = (c - 1) / 2;
if (heap[root] < heap[c])
{
temporary = heap[root];
heap[root] = heap[c];
heap[c] = temporary;
}
c = root;
} while (c != 0);
}
printf("Heap array : ");
for (i = 0; i < array_size; i++)
printf("%d\t ", heap[i]);
for (j = array_size - 1; j >= 0; j--)
{
temporary = heap[0];
heap[0] = heap[j] ;
heap[j] = temporary;
root = 0;
do
{
c = 2 * root + 1;
if ((heap[c] < heap[c + 1]) && c < j-1)
c++;
if (heap[root]<heap[c] && c<j)
{
temporary = heap[root];
heap[root] = heap[c];
heap[c] = temporary;
}
root = c;
} while (c < j);
}
printf("\n The sorted array is : ");
for (i = 0; i < array_size; i++)
printf("\t %d", heap[i]);
}
Example 2: heapify down
Heapify down is used when we remove the top element from a heap. Removal of an element is done by swapping the top element with the last element at the bottom of the tree, removing the last element, and then heapfying the new top element down to maintain the heap property. Because this moves down the heap tree, it must perform two comparisons per iteration, with the left child and the right child elements, then swap with the smaller one. Because of this, heapify down is usually more complex to implement than heapify up.