heapsort with heapify down code example

Example 1: heap sort heapify and max heap in binary tree

Implementation of heap sort in C:

#include <stdio.h>
int main()
{
   int heap[10], array_size, i, j, c, root, temporary;
   printf("\n Enter size of array to be sorted :");
   scanf("%d", &array_size);
   printf("\n Enter the elements of array : ");
   for (i = 0; i < array_size; i++)
      scanf("%d", &heap[i]);
   for (i = 1; i < array_size; i++)
   {
       c = i;
       do
       {
           root = (c - 1) / 2;            
           if (heap[root] < heap[c])   /* to create MAX heap array */
           {                                  // if child is greater than parent swap them
               temporary = heap[root];      // as structure is of complete binary tree
               heap[root] = heap[c];     // it took logn steps to reach from root to leaf
               heap[c] = temporary;
           }
           c = root;
       } while (c != 0);
   }
   printf("Heap array : ");
   for (i = 0; i < array_size; i++)
       printf("%d\t ", heap[i]);         //printing the heap array
   for (j = array_size - 1; j >= 0; j--)
   {
       temporary = heap[0];
       heap[0] = heap[j] ;   /* swap max element with rightmost leaf element */
       heap[j] = temporary;
       root = 0;
       do
       {
           c = 2 * root + 1;    /* left node of root element */
           if ((heap[c] < heap[c + 1]) && c < j-1)
               c++;
           if (heap[root]<heap[c] && c<j)    /* again rearrange to max heap array */
           {
               temporary = heap[root];
               heap[root] = heap[c];
               heap[c] = temporary;
           }
           root = c;
       } while (c < j);
   }
   printf("\n The sorted array is : ");
   for (i = 0; i < array_size; i++)
      printf("\t %d", heap[i]);
}

Example 2: heapify down

Heapify down is used when we remove the top element from a heap. Removal of an element is done by swapping the top element with the last element at the bottom of the tree, removing the last element, and then heapfying the new top element down to maintain the heap property. Because this moves down the heap tree, it must perform two comparisons per iteration, with the left child and the right child elements, then swap with the smaller one. Because of this, heapify down is usually more complex to implement than heapify up.