How can I calculate $\lim_{n \rightarrow \infty} \frac {e^n(2n)!}{(4n)^nn!}$
This is based on the following lemma.
Lemma: If $f\in C^{1}[0,1] $ then $$\lim_{n\to\infty} \sum_{k=1}^{n}f\left(\frac{k}{n}\right)-n\int_{0}^{1}f(x)\,dx=\frac{f(1)-f(0)}{2}$$ (proof available here)
In the above lemma it is sufficient to assume the Riemann integrability of $f'$.
If $a_n$ is the sequence in question and $L$ is the desired limit then we have \begin{align} \log L&=\log \lim_{n\to\infty}a_n\notag\\ &=\lim_{n\to \infty} \log a_n\notag \\ &=\lim_{n\to\infty} n\log\left(\frac{e}{4}\right)+\sum_{k=1}^{n}\log\left(1+\frac{k}{n}\right)\notag\\ &=\lim_{n\to\infty} \sum_{k=1}^{n}f\left(\frac{k}{n}\right)-n\int_{0}^{1}f(x)\,dx\notag \end{align} where $f(x) =\log(1+x)$. Using the lemma we see that $$\log L=\frac{\log 2}{2}$$ and hence $L=\sqrt{2}$.