How can I fake superscript and subscript with Core Text and an Attributed String?

There is no baseline setting amongst the CTParagraphStyleSpecifiers or the defined string attribute name constants. I think it's therefore safe to conclude that CoreText does not itself support a baseline adjust property on text. There's a reference made to baseline placement in CTTypesetter, but I can't tie that to any ability to vary the baseline over the course of a line in the iPad's CoreText.

Hence, you probably need to interfere in the rendering process yourself. For example:

  • create a CTFramesetter, e.g. via CTFramesetterCreateWithAttributedString
  • get a CTFrame from that via CTFramesetterCreateFrame
  • use CTFrameGetLineOrigins and CTFrameGetLines to get an array of CTLines and where they should be drawn (ie, the text with suitable paragraph/line breaks and all your other kerning/leading/other positioning text attributes applied)
  • from those, for lines with no superscript or subscript, just use CTLineDraw and forget about it
  • for those with superscript or subscript, use CTLineGetGlyphRuns to get an array of CTRun objects describing the various glyphs on the line
  • on each run, use CTRunGetStringIndices to determine which source characters are in the run; if none that you want to superscript or subscript are included, just use CTRunDraw to draw the thing
  • otherwise, use CTRunGetGlyphs to break the run into individual glyphs and CTRunGetPositions to figure out where they would be drawn in the normal run of things
  • use CGContextShowGlyphsAtPoint as appropriate, having tweaked the text matrix for those you want in superscript or subscript

I haven't yet found a way to query whether a font has the relevant hints for automatic superscript/subscript generation, which makes things a bit tricky. If you're desperate and don't have a solution to that, it's probably easier just not to use CoreText's stuff at all — in which case you should probably define your own attribute (that's why [NS/CF]AttributedString allow arbitrary attributes to be applied, identified by string name) and use the normal NSString searching methods to identify regions that need to be printed in superscript or subscript from blind.

For performance reasons, binary search is probably the way to go on searching all lines, the runs within a line and the glyphs within a run for those you're interested in. Assuming you have a custom UIView subclass to draw CoreText content, it's probably smarter to do it ahead of time rather than upon every drawRect: (or the equivalent methods, if e.g. you're using a CATiledLayer).

Also, the CTRun methods have variants that request a pointer to a C array containing the things you're asking for copies of, possibly saving you a copy operation but not necessarily succeeding. Check the documentation. I've just made sure that I'm sketching a workable solution rather than necessarily plotting the absolutely optimal route through the CoreText API.


Here is some code based on Tommy's outline that does the job quite well (tested on only single lines though). Set the baseline on your attributed string with @"MDBaselineAdjust", and this code draws the line to offset, a CGPoint. To get superscript, also lower the font size a notch. Preview of what's possible: http://cloud.mochidev.com/IfPF (the line that reads "[Xe] 4f14...")

Hope this helps :)

NSAttributedString *string = ...;
CGPoint origin = ...;

CTFramesetterRef framesetter = CTFramesetterCreateWithAttributedString((CFAttributedStringRef)string);
CGSize suggestedSize = CTFramesetterSuggestFrameSizeWithConstraints(framesetter, CFRangeMake(0, string.length), NULL, CGSizeMake(CGFLOAT_MAX, CGFLOAT_MAX), NULL);
CGPathRef path = CGPathCreateWithRect(CGRectMake(origin.x, origin.y, suggestedSize.width, suggestedSize.height), NULL);
CTFrameRef frame = CTFramesetterCreateFrame(framesetter, CFRangeMake(0, string.length), path, NULL);
NSArray *lines = (NSArray *)CTFrameGetLines(frame);
if (lines.count) {
    CGPoint *lineOrigins = malloc(lines.count * sizeof(CGPoint));
    CTFrameGetLineOrigins(frame, CFRangeMake(0, lines.count), lineOrigins);

    int i = 0;
    for (id aLine in lines) {
        NSArray *glyphRuns = (NSArray *)CTLineGetGlyphRuns((CTLineRef)aLine);

        CGFloat width = origin.x+lineOrigins[i].x-lineOrigins[0].x;

        for (id run in glyphRuns) {
            CFRange range = CTRunGetStringRange((CTRunRef)run);
            NSDictionary *dict = [string attributesAtIndex:range.location effectiveRange:NULL];
            CGFloat baselineAdjust = [[dict objectForKey:@"MDBaselineAdjust"] doubleValue];

            CGContextSetTextPosition(context, width, origin.y+baselineAdjust);

            CTRunDraw((CTRunRef)run, context, CFRangeMake(0, 0));
        }

        i++;
    }

    free(lineOrigins);
}
CFRelease(frame);
CGPathRelease(path);
CFRelease(framesetter);

`


I've been having trouble with this myself. Apple's Core Text documentation claims that there has been support in iOS since version 3.2, but for some reason it still just doesn't work. Even in iOS 5... how very frustrating >.<

I managed to find a workaround if you only really care about superscript or subscript numbers. Say you have a block of text can might contain a "sub2" tag where you want a subscript number 2. Use NSRegularExpression to find the tags, and then use replacementStringForResult method on your regex object to replace each tag with unicode characters:

if ([match isEqualToString:@"<sub2/>"])
{
   replacement = @"₂";
}

If you use the OSX character viewer, you can drop unicode characters right into your code. There's a set of characters in there called "Digits" which has all the superscript and subscript number characters. Just leave your cursor at the appropriate spot in your code window and double-click in the character viewer to insert the character you want.

With the right font, you could probably do this with any letter as well, but the character map only has a handful of non-numbers available for this that I've seen.

Alternatively you can just put the unicode characters in your source content, but in a lot of cases (like mine), that isn't possible.


You can mimic subscripts now using TextKit in iOS7. Example:

NSMutableAttributedString *carbonDioxide = [[NSMutableAttributedString alloc] initWithString:@"CO2"];
[carbonDioxide addAttribute:NSFontAttributeName value:[UIFont systemFontOfSize:8] range:NSMakeRange(2, 1)];
[carbonDioxide addAttribute:NSBaselineOffsetAttributeName value:@(-2) range:NSMakeRange(2, 1)];

Image of attributed string output