How can I map True/False to 1/0 in a Pandas DataFrame?

A succinct way to convert a single column of boolean values to a column of integers 1 or 0:

df["somecolumn"] = df["somecolumn"].astype(int)

True is 1 in Python, and likewise False is 0*:

>>> True == 1
True
>>> False == 0
True

You should be able to perform any operations you want on them by just treating them as though they were numbers, as they are numbers:

>>> issubclass(bool, int)
True
>>> True * 5
5

So to answer your question, no work necessary - you already have what you are looking for.

* Note I use is as an English word, not the Python keyword is - True will not be the same object as any random 1.


This question specifically mentions a single column, so the currently accepted answer works. However, it doesn't generalize to multiple columns. For those interested in a general solution, use the following:

df.replace({False: 0, True: 1}, inplace=True)

This works for a DataFrame that contains columns of many different types, regardless of how many are boolean.


Just multiply your Dataframe by 1 (int)

[1]: data = pd.DataFrame([[True, False, True], [False, False, True]])
[2]: print data
          0      1     2
     0   True  False  True
     1   False False  True

[3]: print data*1
         0  1  2
     0   1  0  1
     1   0  0  1