How Can I prove $\sum_{n=1}^{\infty}{\frac{n^4}{5^n}}=\frac{285}{128}$
Here's a hint:
You should be able to evaluate the series $$\sum_{n=1}^\infty \frac{1}{5^n}$$ with a simple geometric series argument. More generally, this allows you to say something like $$\sum_{n=1}^\infty x^n = \frac{x}{1-x}$$ for $-1<x<1$. The magic happens when you take the derivative of this to get $$\sum_{n=1}^\infty nx^{n-1}=\frac{1}{(1-x)^2},$$ which gives that $$\sum_{n=1}^\infty nx^n=\frac{x}{(1-x)^2}.$$ However, we want a higher power of $x$. What happens if we take the derivative again? Can you generalize this enough to solve your problem?
Equivalently, we want to evaluate $\left.\sum_nn^4x^n\right|_{x=1/5}$ with $\sum_n:=\sum_{n=\color{blue}{0}}^\infty$. By the binomial theorem, if $|x|<1$ then$$\begin{align}(1-x)^{-1}&=\sum_nx^n,\,\\(1-x)^{-2}&=\sum_n(n+1)x^n,\,\\(1-x)^{-3}&=\sum_n\tfrac12(n+1)(n+2)x^n,\,\\(1-x)^{-4}&=\sum_n\tfrac16(n+1)(n+2)(n+3)x^n,\,\\(1-x)^{-5}&=\sum_n\tfrac{1}{24}(n+1)(n+2)(n+3)(n+4)x^n.\end{align}$$We'll find a linear combination by first getting the $n^4$ coefficient right, then $n^3$ etc. Since$$\begin{align}n^4&=24\cdot\tfrac{1}{24}(n+1)(n+2)(n+3)(n+4)\\&-60\cdot\tfrac16(n+1)(n+2)(n+3)\\&+50\cdot\tfrac12(n+1)(n+2)\\&-15\cdot(n+1)\\&+1,\end{align}$$we have$$\begin{align}\sum_nn^4x^n&=24(1-x)^{-5}-60(1-x)^{-4}\\&+50(1-x)^{-3}-15(1-x)^{-2}+(1-x)^{-1}.\end{align}$$Substituting $x=\tfrac15$ gives the desired result.