How can I replicate rows in Pandas?
Using concat
:
pd.concat([df]*3).sort_index()
Out[129]:
Person ID ZipCode Gender
0 12345 882 38182 Female
0 12345 882 38182 Female
0 12345 882 38182 Female
1 32917 271 88172 Male
1 32917 271 88172 Male
1 32917 271 88172 Male
2 18273 552 90291 Female
2 18273 552 90291 Female
2 18273 552 90291 Female
Use np.repeat
:
Version 1:
Try using np.repeat
:
newdf = pd.DataFrame(np.repeat(df.values, 3, axis=0))
newdf.columns = df.columns
print(newdf)
The above code will output:
Person ID ZipCode Gender
0 12345 882 38182 Female
1 12345 882 38182 Female
2 12345 882 38182 Female
3 32917 271 88172 Male
4 32917 271 88172 Male
5 32917 271 88172 Male
6 18273 552 90291 Female
7 18273 552 90291 Female
8 18273 552 90291 Female
np.repeat
repeats the values of df
, 3
times.
Then we add the columns with assigning new_df.columns = df.columns
.
Version 2:
You could also assign the column names in the first line, like below:
newdf = pd.DataFrame(np.repeat(df.values, 3, axis=0), columns=df.columns)
print(newdf)
The above code will also output:
Person ID ZipCode Gender
0 12345 882 38182 Female
1 12345 882 38182 Female
2 12345 882 38182 Female
3 32917 271 88172 Male
4 32917 271 88172 Male
5 32917 271 88172 Male
6 18273 552 90291 Female
7 18273 552 90291 Female
8 18273 552 90291 Female
These will repeat the indices and preserve the columns as op demonstrated
iloc
version 1
df.iloc[np.arange(len(df)).repeat(3)]
iloc
version 2
df.iloc[np.arange(len(df) * 3) // 3]
You can do it like this.
def do_things(df, n_times):
ndf = df.append(pd.DataFrame({'name' : np.repeat(df.name.values, n_times) }))
ndf = ndf.sort_values(by='name')
ndf = ndf.reset_index(drop=True)
return ndf
if __name__ == '__main__':
df = pd.DataFrame({'name' : ['Peter', 'Quill', 'Jackson']})
n_times = 3
print do_things(df, n_times)
And with explanation...
import pandas as pd
import numpy as np
n_times = 3
df = pd.DataFrame({'name' : ['Peter', 'Quill', 'Jackson']})
# name
# 0 Peter
# 1 Quill
# 2 Jackson
# Duplicating data.
df = df.append(pd.DataFrame({'name' : np.repeat(df.name.values, n_times) }))
# name
# 0 Peter
# 1 Quill
# 2 Jackson
# 0 Peter
# 1 Peter
# 2 Peter
# 3 Quill
# 4 Quill
# 5 Quill
# 6 Jackson
# 7 Jackson
# 8 Jackson
# The DataFrame is sorted by 'name' column.
df = df.sort_values(by=['name'])
# name
# 2 Jackson
# 6 Jackson
# 7 Jackson
# 8 Jackson
# 0 Peter
# 0 Peter
# 1 Peter
# 2 Peter
# 1 Quill
# 3 Quill
# 4 Quill
# 5 Quill
# Reseting the index.
# You can play with drop=True and drop=False, as parameter of `reset_index()`
df = df.reset_index()
# index name
# 0 2 Jackson
# 1 6 Jackson
# 2 7 Jackson
# 3 8 Jackson
# 4 0 Peter
# 5 0 Peter
# 6 1 Peter
# 7 2 Peter
# 8 1 Quill
# 9 3 Quill
# 10 4 Quill
# 11 5 Quill