How can I tell if a string repeats itself in Python?

Here are some benchmarks for the various answers to this question. There were some surprising results, including wildly different performance depending on the string being tested.

Some functions were modified to work with Python 3 (mainly by replacing / with // to ensure integer division). If you see something wrong, want to add your function, or want to add another test string, ping @ZeroPiraeus in the Python chatroom.

In summary: there's about a 50x difference between the best- and worst-performing solutions for the large set of example data supplied by OP here (via this comment). David Zhang's solution is the clear winner, outperforming all others by around 5x for the large example set.

A couple of the answers are very slow in extremely large "no match" cases. Otherwise, the functions seem to be equally matched or clear winners depending on the test.

Here are the results, including plots made using matplotlib and seaborn to show the different distributions:


Corpus 1 (supplied examples - small set)

mean performance:
 0.0003  david_zhang
 0.0009  zero
 0.0013  antti
 0.0013  tigerhawk_2
 0.0015  carpetpython
 0.0029  tigerhawk_1
 0.0031  davidism
 0.0035  saksham
 0.0046  shashank
 0.0052  riad
 0.0056  piotr

median performance:
 0.0003  david_zhang
 0.0008  zero
 0.0013  antti
 0.0013  tigerhawk_2
 0.0014  carpetpython
 0.0027  tigerhawk_1
 0.0031  davidism
 0.0038  saksham
 0.0044  shashank
 0.0054  riad
 0.0058  piotr

Corpus 1 graph


Corpus 2 (supplied examples - large set)

mean performance:
 0.0006  david_zhang
 0.0036  tigerhawk_2
 0.0036  antti
 0.0037  zero
 0.0039  carpetpython
 0.0052  shashank
 0.0056  piotr
 0.0066  davidism
 0.0120  tigerhawk_1
 0.0177  riad
 0.0283  saksham

median performance:
 0.0004  david_zhang
 0.0018  zero
 0.0022  tigerhawk_2
 0.0022  antti
 0.0024  carpetpython
 0.0043  davidism
 0.0049  shashank
 0.0055  piotr
 0.0061  tigerhawk_1
 0.0077  riad
 0.0109  saksham

Corpus 1 graph


Corpus 3 (edge cases)

mean performance:
 0.0123  shashank
 0.0375  david_zhang
 0.0376  piotr
 0.0394  carpetpython
 0.0479  antti
 0.0488  tigerhawk_2
 0.2269  tigerhawk_1
 0.2336  davidism
 0.7239  saksham
 3.6265  zero
 6.0111  riad

median performance:
 0.0107  tigerhawk_2
 0.0108  antti
 0.0109  carpetpython
 0.0135  david_zhang
 0.0137  tigerhawk_1
 0.0150  shashank
 0.0229  saksham
 0.0255  piotr
 0.0721  davidism
 0.1080  zero
 1.8539  riad

Corpus 3 graph


The tests and raw results are available here.


Here's a solution using regular expressions.

import re

REPEATER = re.compile(r"(.+?)\1+$")

def repeated(s):
    match = REPEATER.match(s)
    return match.group(1) if match else None

Iterating over the examples in the question:

examples = [
    '0045662100456621004566210045662100456621',
    '0072992700729927007299270072992700729927',
    '001443001443001443001443001443001443001443',
    '037037037037037037037037037037037037037037037',
    '047619047619047619047619047619047619047619',
    '002457002457002457002457002457002457002457',
    '001221001221001221001221001221001221001221',
    '001230012300123001230012300123001230012300123',
    '0013947001394700139470013947001394700139470013947',
    '001001001001001001001001001001001001001001001001001',
    '001406469760900140646976090014064697609',
    '004608294930875576036866359447',
    '00469483568075117370892018779342723',
    '004739336492890995260663507109',
    '001508295625942684766214177978883861236802413273',
    '007518796992481203',
    '0071942446043165467625899280575539568345323741',
    '0434782608695652173913',
    '0344827586206896551724137931',
    '002481389578163771712158808933',
    '002932551319648093841642228739',
    '0035587188612099644128113879',
    '003484320557491289198606271777',
    '00115074798619102416570771',
]

for e in examples:
    sub = repeated(e)
    if sub:
        print("%r: %r" % (e, sub))
    else:
        print("%r does not repeat." % e)

... produces this output:

'0045662100456621004566210045662100456621': '00456621'
'0072992700729927007299270072992700729927': '00729927'
'001443001443001443001443001443001443001443': '001443'
'037037037037037037037037037037037037037037037': '037'
'047619047619047619047619047619047619047619': '047619'
'002457002457002457002457002457002457002457': '002457'
'001221001221001221001221001221001221001221': '001221'
'001230012300123001230012300123001230012300123': '00123'
'0013947001394700139470013947001394700139470013947': '0013947'
'001001001001001001001001001001001001001001001001001': '001'
'001406469760900140646976090014064697609': '0014064697609'
'004608294930875576036866359447' does not repeat.
'00469483568075117370892018779342723' does not repeat.
'004739336492890995260663507109' does not repeat.
'001508295625942684766214177978883861236802413273' does not repeat.
'007518796992481203' does not repeat.
'0071942446043165467625899280575539568345323741' does not repeat.
'0434782608695652173913' does not repeat.
'0344827586206896551724137931' does not repeat.
'002481389578163771712158808933' does not repeat.
'002932551319648093841642228739' does not repeat.
'0035587188612099644128113879' does not repeat.
'003484320557491289198606271777' does not repeat.
'00115074798619102416570771' does not repeat.

The regular expression (.+?)\1+$ is divided into three parts:

  1. (.+?) is a matching group containing at least one (but as few as possible) of any character (because +? is non-greedy).

  2. \1+ checks for at least one repetition of the matching group in the first part.

  3. $ checks for the end of the string, to ensure that there's no extra, non-repeating content after the repeated substrings (and using re.match() ensures that there's no non-repeating text before the repeated substrings).

In Python 3.4 and later, you could drop the $ and use re.fullmatch() instead, or (in any Python at least as far back as 2.3) go the other way and use re.search() with the regex ^(.+?)\1+$, all of which are more down to personal taste than anything else.


Here's a concise solution which avoids regular expressions and slow in-Python loops:

def principal_period(s):
    i = (s+s).find(s, 1, -1)
    return None if i == -1 else s[:i]

See the Community Wiki answer started by @davidism for benchmark results. In summary,

David Zhang's solution is the clear winner, outperforming all others by at least 5x for the large example set.

(That answer's words, not mine.)

This is based on the observation that a string is periodic if and only if it is equal to a nontrivial rotation of itself. Kudos to @AleksiTorhamo for realizing that we can then recover the principal period from the index of the first occurrence of s in (s+s)[1:-1], and for informing me of the optional start and end arguments of Python's string.find.


You can make the observation that for a string to be considered repeating, its length must be divisible by the length of its repeated sequence. Given that, here is a solution that generates divisors of the length from 1 to n / 2 inclusive, divides the original string into substrings with the length of the divisors, and tests the equality of the result set:

from math import sqrt, floor

def divquot(n):
    if n > 1:
        yield 1, n
    swapped = []
    for d in range(2, int(floor(sqrt(n))) + 1):
        q, r = divmod(n, d)
        if r == 0:
            yield d, q
            swapped.append((q, d))
    while swapped:
        yield swapped.pop()

def repeats(s):
    n = len(s)
    for d, q in divquot(n):
        sl = s[0:d]
        if sl * q == s:
            return sl
    return None

EDIT: In Python 3, the / operator has changed to do float division by default. To get the int division from Python 2, you can use the // operator instead. Thank you to @TigerhawkT3 for bringing this to my attention.

The // operator performs integer division in both Python 2 and Python 3, so I've updated the answer to support both versions. The part where we test to see if all the substrings are equal is now a short-circuiting operation using all and a generator expression.

UPDATE: In response to a change in the original question, the code has now been updated to return the smallest repeating substring if it exists and None if it does not. @godlygeek has suggested using divmod to reduce the number of iterations on the divisors generator, and the code has been updated to match that as well. It now returns all positive divisors of n in ascending order, exclusive of n itself.

Further update for high performance: After multiple tests, I've come to the conclusion that simply testing for string equality has the best performance out of any slicing or iterator solution in Python. Thus, I've taken a leaf out of @TigerhawkT3 's book and updated my solution. It's now over 6x as fast as before, noticably faster than Tigerhawk's solution but slower than David's.