How can two continuations cancel each other out?
A function f :: a -> b
can be "disguised" inside double continuations as a function f' :: ((a -> r1) -> r2) -> ((b -> r1) -> r2)
.
obfuscate :: (a -> b) -> ((a -> r1) -> r2) -> (b -> r1) -> r2
obfuscate f k2 k1 = k2 (k1 . f)
obfuscate
has the nice property that it preserves function composition and identity: you can prove that obfuscate f . obfuscate g === obfuscate (f . g)
and that obfuscate id === id
in a few steps. That means that you can frequently use this transformation to untangle double-continuation computations that compose obfuscate
d functions together by factoring the obfuscate
out of the composition. This question is an example of such an untangling.
The f
in the top code block is the obfuscate
d version of the f
in the bottom block (more precisely, top f x
is the obfuscate
d version of bottom f x
). You can see this by noticing how top f
applies the outer continuation to a function that transforms its input and then applies the whole thing to the inner continuation, just like in the body of obfuscate
.
So we can start to untangle zipRev
:
zipRev xs ys = foldr f id xs snd (ys,[])
where
f x = obfuscate (\(y:ys,r) -> (ys,(x,y):r))
Since the action of foldr
here is to compose a bunch of obfuscate
d functions with each other (and apply it all to id
, which we can leave on the right), we can factor the obfuscate
to the outside of the whole fold:
zipRev xs ys = obfuscate (\accum -> foldr f accum xs) id snd (ys,[])
where
f x (y:ys,r) = (ys,(x,y):r)
Now apply the definition of obfuscate
and simplify:
zipRev xs ys = obfuscate (\accum -> foldr f accum xs) id snd (ys,[])
zipRev xs ys = id (snd . (\accum -> foldr f accum xs)) (ys,[])
zipRev xs ys = snd (foldr f (ys,[]) xs)
QED!
Let's try to understand this code from an elementary point of view. What does it even do, one wonders?
zipRev xs ys = foldr f id xs snd (ys,[])
where
-- f x k c = k (\(y:ys, r) -> c (ys, (x,y):r))
f x k c = k (g x c)
-- = (k . g x) c -- so,
-- f x k = k . g x
g x c (y:ys, r) = c (ys, (x,y):r)
Here we used lambda lifting to recover the g
combinator.
So then because f x k = k . g x
were k
goes to the left of x
, the input list is translated into a reversed chain of compositions,
foldr f id [x1, x2, x3, ..., xn] where f x k = k . g x
===>>
(((...(id . g xn) . ... . g x3) . g x2) . g x1)
and thus, it just does what a left fold would do,
zipRev [] ys = []
zipRev [x1, x2, x3, ..., xn] ys
= (id . g xn . ... . g x3 . g x2 . g x1) snd (ys, [])
= g xn (g xn1 ( ... ( g x3 ( g x2 ( g x1 snd)))...)) (ys, [])
where ----c--------------------------------------------
g x c (y:ys, r) = c (ys, (x,y):r)
So we went to the deep end of the xs
list, and then we come back consuming the ys
list left-to-right (i.e. top-down) on our way back right-to-left on the xs
list (i.e. bottom-up). This is straightforwardly coded as a right fold with strict reducer, so the flow is indeed right-to-left on the xs
. The bottom-most action (snd
) in the chain is done last, so in the new code it becomes the topmost (still done last):
zipRev xs ys = snd (foldr h (ys,[]) xs)
where
h x (y:ys, r) = (ys, (x,y):r)
g x c
was used as a continuation in the original code, with c
as a second-tier continuation; but it's actually all just been a regular fold from the right, all along.
So indeed it zips the reversed first list with the second. It's also unsafe; it misses a clause:
g x c ([], r) = c ([], r) -- or just `r`
g x c (y:ys, r) = c (ys, (x,y):r)
(update:) The answers by duplode (and Joseph Sible) do the lambda lifting a bit differently, in a way which is better suited to the task. It goes like this:
zipRev xs ys = foldr f id xs snd (ys,[])
where
f x k c = k (\((y:ys), r) -> c (ys, (x,y):r))
= k (c . (\((y:ys), r) -> (ys, (x,y):r)) )
= k (c . g x)
g x = (\((y:ys), r) -> (ys, (x,y):r))
{- f x k c = k ((. g x) c) = (k . (. g x)) c = (. (. g x)) k c
f x = (. (. g x)) -}
so then
foldr f id [ x1, x2, ... , xn ] snd (ys,[]) =
= ( (. (. g x1)) $ (. (. g x2)) $ ... $ (. (. g xn)) id ) snd (ys,[]) -- 1,2...n
= ( id . (. g xn) . ... . (. g x2) . (. g x1) ) snd (ys,[]) -- n...2,1
= ( snd . g x1 . g x2 . ... . g xn ) (ys,[]) -- 1,2...n!
= snd $ g x1 $ g x2 $ ... $ g xn (ys,[])
= snd $ foldr g (ys,[]) [x1, x2, ..., xn ]
Simple. :) Flipping twice is no flipping at all.
Given a function
g :: a₁ -> a₂
we can lift it to a function on continuations, switching the order:
lift g = (\c a₁ -> c (g a₁))
:: (a₂ -> t) -> a₁ -> t
This transformation is a contravariant functor, which is to say that it interacts with function composition by switching its order:
g₁ :: a₁ -> a₂
g₂ :: a₂ -> a₃
lift g₁ . lift g₂
== (\c₁ a₁ -> c₁ (g₁ a₁)) . (\c₂ a₂ -> c₂ (g₂ a₂))
== \c₂ a₁ -> (\a₂ -> c₂ (g₂ a₂)) (g₁ a₁)
== \c₂ a₁ -> c₂ (g₂ (g₁ a₁))
== lift (g₂ . g₁)
:: (a₃ -> t) -> a₁ -> t
lift id
== (\c a₁ -> c a₁)
== id
:: (a₁ -> t) -> a₁ -> t
We can lift the lifted function again in the same way to a function on stacked continuations, with the order switched back:
lift (lift g)
== (\k c -> k ((\c a₁ -> c (g a₁)) c))
== (\k c -> k (\a₁ -> c (g a₁)))
:: ((a₁ -> t) -> u) -> (a₂ -> t) -> u
Stacking two contravariant functors gives us a (covariant) functor:
lift (lift g₁) . lift (lift g₂)
== lift (lift g₂ . lift g₁)
== lift (lift (g₁ . g₂))
:: ((a₁ -> t) -> u) -> (a₃ -> t) -> u
lift (lift id)
== lift id
== id
:: ((a₁ -> t) -> u) -> (a₁ -> t) -> u
This is exactly the transformation being reversed in your example, with g = \(y:ys, r) -> (ys, (x, y):r)
. This g
is an endomorphism (a₁ = a₂
), and the foldr
is composing together a bunch of copies of it with various x
. What we’re doing is replacing the composition of double-lifted functions with the double-lift of the composition of the functions, which is just an inductive application of the functor laws:
f :: x -> a₁ -> a₁
c :: (a₁ -> t) -> u
xs :: [x]
foldr (\x -> lift (lift (f x))) c xs
== lift (lift (\a₁ -> foldr f a₁ xs)) c
:: (a₁ -> t) -> u
Let's begin with a few cosmetic adjustments:
-- Note that `g x` is an endomorphism.
g :: a -> ([b], [(a,b)]) -> ([b], [(a,b)])
g x ((y:ys),r) = (ys,(x,y):r)
zipRev xs ys = foldr f id xs snd (ys,[])
where
f x k = \c -> k (c . g x)
f
feeds a continuation (c . g x
) to another function (k
, a "double continuation", as user11228628 puts it).
While we might reasonably expect that repeated usage of f
as the fold proceeds will somehow compose the g x
endomorphisms made out of the elements of the list, the order in which the endomorphisms are composed might not be immediately obvious, so we'd better walk through a few fold steps to be sure:
-- x0 is the first element, x1 the second, etc.
f x0 k0
\c -> k0 (c . g x0)
\c -> (f x1 k1) (c . g x0) -- k0 is the result of a fold step.
\c -> (\d -> k1 (d . g x1)) (c . g x0) -- Renaming a variable for clarity.
\c -> k1 (c . g x0 . g x1)
-- etc .
-- xa is the *last* element, xb the next-to-last, etc.
-- ka is the initial value passed to foldr.
\c -> (f xa ka) (c . g x0 . g x1 . . . g xb)
\c -> (\d -> ka (d . g xa)) (c . g x0 . g x1 . . . g xb)
\c -> ka (c . g x0 . g x1 . . . g xb . g xa)
ka
, the initial value passed to foldr, is id
, which makes things quite a bit simpler:
foldr f id xs = \c -> c . g x0 . g x1 . . . g xa
Since all we do with the c
argument passed to foldr f id xs
is post-composing it with the endomorphisms, we might as well factor it out of the fold:
zipRev xs ys = (snd . foldr h id xs) (ys,[])
where
h x e = g x . e
Note how we have gone from c . g x
to g x . e
. That can arguably be described as a collateral effect of the CPS trickery in the original implementation.
The final step is noticing how h x e = g x . e
corresponds exactly to what we would do to implement foldr
in terms of foldMap
for the Endo
monoid. Or, to put it more explicitly:
foldEndo g i xs = foldr g i xs -- The goal is obtaining an Endo-like definition.
foldEndo _ i [] = i
foldEndo g i (x : xs) = g x (foldEndo g i xs)
foldEndo g i xs = go xs i
where
go [] = \j -> j
go (x : xs) = \j -> g x (foldEndo g j xs)
foldEndo g i xs = go xs i
where
go [] = \j -> j
go (x : xs) = \j -> g x (go xs j)
foldEndo g i xs = go xs i
where
go [] = id
go (x : xs) = g x . go xs
foldEndo g i xs = go xs i
where
h x e = g x . e
go [] = id
go (x : xs) = h x (go xs)
foldEndo g i xs = go xs i
where
h x e = g x . e
go xs = foldr h id xs
foldEndo g i xs = foldr h id xs i
where
h x e = g x . e
That finally leads us to what we were looking for:
zipRev xs ys = snd (foldr g (ys,[]) xs)