How can we JOIN two Spark SQL dataframes using a SQL-esque "LIKE" criterion?

It is possible in a two different ways but generally speaking not recommended. First lets create a dummy data:

from pyspark.sql import Row

document_row = Row("document_id", "document_text")
keyword_row = Row("keyword") 

documents_df = sc.parallelize([
    document_row(1L, "apache spark is the best"),
    document_row(2L, "erlang rocks"),
    document_row(3L, "but haskell is better")
]).toDF()

keywords_df = sc.parallelize([
    keyword_row("erlang"),
    keyword_row("haskell"),
    keyword_row("spark")
]).toDF()
  1. Hive UDFs

    documents_df.registerTempTable("documents")
    keywords_df.registerTempTable("keywords")
    
    query = """SELECT document_id, keyword
        FROM documents JOIN keywords
        ON document_text LIKE CONCAT('%', keyword, '%')"""
    
    like_with_hive_udf = sqlContext.sql(query)
    like_with_hive_udf.show()
    
    ## +-----------+-------+
    ## |document_id|keyword|
    ## +-----------+-------+
    ## |          1|  spark|
    ## |          2| erlang|
    ## |          3|haskell|
    ## +-----------+-------+
    
  2. Python UDF

    from pyspark.sql.functions import udf, col 
    from pyspark.sql.types import BooleanType
    
    # Of you can replace `in` with a regular expression
    contains = udf(lambda s, q: q in s, BooleanType())
    
    like_with_python_udf = (documents_df.join(keywords_df)
        .where(contains(col("document_text"), col("keyword")))
        .select(col("document_id"), col("keyword")))
    like_with_python_udf.show()
    
    ## +-----------+-------+
    ## |document_id|keyword|
    ## +-----------+-------+
    ## |          1|  spark|
    ## |          2| erlang|
    ## |          3|haskell|
    ## +-----------+-------+
    

Why not recommended? Because in both cases it requires a Cartesian product:

like_with_hive_udf.explain()

## TungstenProject [document_id#2L,keyword#4]
##  Filter document_text#3 LIKE concat(%,keyword#4,%)
##   CartesianProduct
##    Scan PhysicalRDD[document_id#2L,document_text#3]
##    Scan PhysicalRDD[keyword#4]

like_with_python_udf.explain()

## TungstenProject [document_id#2L,keyword#4]
##  Filter pythonUDF#13
##   !BatchPythonEvaluation PythonUDF#<lambda>(document_text#3,keyword#4), ...
##    CartesianProduct
##     Scan PhysicalRDD[document_id#2L,document_text#3]
##     Scan PhysicalRDD[keyword#4]

There are other ways to achieve a similar effect without a full Cartesian.

  1. Join on tokenized document - useful if keywords list is to large to be handled in a memory of a single machine

    from pyspark.ml.feature import Tokenizer
    from pyspark.sql.functions import explode
    
    tokenizer = Tokenizer(inputCol="document_text", outputCol="words")
    
    tokenized = (tokenizer.transform(documents_df)
        .select(col("document_id"), explode(col("words")).alias("token")))
    
    like_with_tokenizer = (tokenized
        .join(keywords_df, col("token") == col("keyword"))
        .drop("token"))
    
    like_with_tokenizer.show()
    
    ## +-----------+-------+
    ## |document_id|keyword|
    ## +-----------+-------+
    ## |          3|haskell|
    ## |          1|  spark|
    ## |          2| erlang|
    ## +-----------+-------+
    

    This requires shuffle but not Cartesian:

    like_with_tokenizer.explain()
    
    ## TungstenProject [document_id#2L,keyword#4]
    ##  SortMergeJoin [token#29], [keyword#4]
    ##   TungstenSort [token#29 ASC], false, 0
    ##    TungstenExchange hashpartitioning(token#29)
    ##     TungstenProject [document_id#2L,token#29]
    ##      !Generate explode(words#27), true, false, [document_id#2L, ...
    ##       ConvertToSafe
    ##        TungstenProject [document_id#2L,UDF(document_text#3) AS words#27]
    ##         Scan PhysicalRDD[document_id#2L,document_text#3]
    ##   TungstenSort [keyword#4 ASC], false, 0
    ##    TungstenExchange hashpartitioning(keyword#4)
    ##     ConvertToUnsafe
    ##      Scan PhysicalRDD[keyword#4]
    
  2. Python UDF and broadcast variable - if keywords list is relatively small

    from pyspark.sql.types import ArrayType, StringType
    
    keywords = sc.broadcast(set(
        keywords_df.map(lambda row: row[0]).collect()))
    
    bd_contains = udf(
        lambda s: list(set(s.split()) & keywords.value), 
        ArrayType(StringType()))
    
    
    like_with_bd = (documents_df.select(
        col("document_id"), 
        explode(bd_contains(col("document_text"))).alias("keyword")))
    
    like_with_bd.show()
    
    ## +-----------+-------+
    ## |document_id|keyword|
    ## +-----------+-------+
    ## |          1|  spark|
    ## |          2| erlang|
    ## |          3|haskell|
    ## +-----------+-------+
    

    It requires neither shuffle nor Cartesian but you still have to transfer broadcast variable to each worker node.

    like_with_bd.explain()
    
    ## TungstenProject [document_id#2L,keyword#46]
    ##  !Generate explode(pythonUDF#47), true, false, ...
    ##   ConvertToSafe
    ##    TungstenProject [document_id#2L,pythonUDF#47]
    ##     !BatchPythonEvaluation PythonUDF#<lambda>(document_text#3), ...
    ##      Scan PhysicalRDD[document_id#2L,document_text#3]
    
  3. Since Spark 1.6.0 you can mark a small data frame using sql.functions.broadcast to get a similar effect as above without using UDFs and explicit broadcast variables. Reusing tokenized data:

    from pyspark.sql.functions import broadcast
    
    like_with_tokenizer_and_bd = (broadcast(tokenized)
        .join(keywords_df, col("token") == col("keyword"))
        .drop("token"))
    
    like_with_tokenizer.explain()
    
    ## TungstenProject [document_id#3L,keyword#5]
    ##  BroadcastHashJoin [token#10], [keyword#5], BuildLeft
    ##   TungstenProject [document_id#3L,token#10]
    ##    !Generate explode(words#8), true, false, ...
    ##     ConvertToSafe
    ##      TungstenProject [document_id#3L,UDF(document_text#4) AS words#8]
    ##       Scan PhysicalRDD[document_id#3L,document_text#4]
    ##   ConvertToUnsafe
    ##    Scan PhysicalRDD[keyword#5]
    

Related: