How can we use tqdm in a parallel execution with joblib?
Just put range(10)
inside tqdm(...)
! It probably seemed too good to be true for you, but it really works (on my machine):
from math import sqrt
from joblib import Parallel, delayed
from tqdm import tqdm
result = Parallel(n_jobs=2)(delayed(sqrt)(i ** 2) for i in tqdm(range(100000)))
Modifying nth's great answer to permit a dynamic flag to use TQDM or not and to specify the total ahead of time so that the status bar fills in correctly.
from tqdm.auto import tqdm
from joblib import Parallel
class ProgressParallel(Parallel):
def __init__(self, use_tqdm=True, total=None, *args, **kwargs):
self._use_tqdm = use_tqdm
self._total = total
super().__init__(*args, **kwargs)
def __call__(self, *args, **kwargs):
with tqdm(disable=not self._use_tqdm, total=self._total) as self._pbar:
return Parallel.__call__(self, *args, **kwargs)
def print_progress(self):
if self._total is None:
self._pbar.total = self.n_dispatched_tasks
self._pbar.n = self.n_completed_tasks
self._pbar.refresh()
As noted above, solutions that simply wrap the iterable passed to joblib.Parallel()
do not truly monitor the progress of execution. Instead, I suggest subclassing Parallel
and overriding the print_progress()
method, as follows:
import joblib
from tqdm.auto import tqdm
class ProgressParallel(joblib.Parallel):
def __call__(self, *args, **kwargs):
with tqdm() as self._pbar:
return joblib.Parallel.__call__(self, *args, **kwargs)
def print_progress(self):
self._pbar.total = self.n_dispatched_tasks
self._pbar.n = self.n_completed_tasks
self._pbar.refresh()
I've created pqdm a parallel tqdm wrapper with concurrent futures to comfortably get this done, give it a try!
To install
pip install pqdm
and use
from pqdm.processes import pqdm
# If you want threads instead:
# from pqdm.threads import pqdm
args = [1, 2, 3, 4, 5]
# args = range(1,6) would also work
def square(a):
return a*a
result = pqdm(args, square, n_jobs=2)