How could I calculate this limit without using L'Hopital's Rule $\lim_{x\rightarrow0} \frac{e^x-1}{\sin(2x)}$?

Using the fact that $$\lim _{ x\rightarrow 0 }{ \frac { { e }^{ x }-1 }{ x } =1 } \\ \lim _{ x\rightarrow 0 }{ \frac { \sin { x } }{ x } =1 } $$ we can conclude that $$\\ \lim _{ x\rightarrow 0 }{ \frac { { e }^{ x }-1 }{ \sin { 2x } } } =\frac { 1 }{ 2 } \lim _{ x\rightarrow 0 }{ \frac { { e }^{ x }-1 }{ x } \frac { 2x }{ \sin { 2x } } } =\frac { 1 }{ 2 } $$


As an alternative and admittedly more mechanical approach, you can series expand top and bottom:

$$\lim _{ x\rightarrow 0 }{ \frac { { e }^{ x }-1 }{ \sin2x }} =\lim _{ x\rightarrow 0 }\frac{1+x+O(x^2)-1}{2x+O(x^3)}=\frac12$$

This will work for most fractions if the variable is tending to $0$. In fact, l'Hopital's rule essentially comes from series expanding $\frac{f(x)}{g(x)}$, so in a sense we are doing the same thing.


Equivalents: $\;\mathrm e^x-1\sim_0 x$, $\;\sin 2x\sim_0 2x$, so $\;\dfrac{\mathrm e^x-1}{\sin 2x}\sim_0\dfrac{x}{2x}=\dfrac12.$