How do I convert strings in a Pandas data frame to a 'date' data type?
Now you can do df['column'].dt.date
Note that for datetime objects, if you don't see the hour when they're all 00:00:00, that's not pandas. That's iPython notebook trying to make things look pretty.
Essentially equivalent to @waitingkuo, but I would use pd.to_datetime
here (it seems a little cleaner, and offers some additional functionality e.g. dayfirst
):
In [11]: df
Out[11]:
a time
0 1 2013-01-01
1 2 2013-01-02
2 3 2013-01-03
In [12]: pd.to_datetime(df['time'])
Out[12]:
0 2013-01-01 00:00:00
1 2013-01-02 00:00:00
2 2013-01-03 00:00:00
Name: time, dtype: datetime64[ns]
In [13]: df['time'] = pd.to_datetime(df['time'])
In [14]: df
Out[14]:
a time
0 1 2013-01-01 00:00:00
1 2 2013-01-02 00:00:00
2 3 2013-01-03 00:00:00
Handling ValueError
s
If you run into a situation where doing
df['time'] = pd.to_datetime(df['time'])
Throws a
ValueError: Unknown string format
That means you have invalid (non-coercible) values. If you are okay with having them converted to pd.NaT
, you can add an errors='coerce'
argument to to_datetime
:
df['time'] = pd.to_datetime(df['time'], errors='coerce')
Use astype
In [31]: df
Out[31]:
a time
0 1 2013-01-01
1 2 2013-01-02
2 3 2013-01-03
In [32]: df['time'] = df['time'].astype('datetime64[ns]')
In [33]: df
Out[33]:
a time
0 1 2013-01-01 00:00:00
1 2 2013-01-02 00:00:00
2 3 2013-01-03 00:00:00
I imagine a lot of data comes into Pandas from CSV files, in which case you can simply convert the date during the initial CSV read:
dfcsv = pd.read_csv('xyz.csv', parse_dates=[0])
where the 0 refers to the column the date is in.
You could also add , index_col=0
in there if you want the date to be your index.
See https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html