How do I find the duplicates in a list and create another list with them?
A very simple solution, but with complexity O(n*n).
>>> xs = [1,2,3,4,4,5,5,6,1]
>>> set([x for x in xs if xs.count(x) > 1])
set([1, 4, 5])
You don't need the count, just whether or not the item was seen before. Adapted that answer to this problem:
def list_duplicates(seq):
seen = set()
seen_add = seen.add
# adds all elements it doesn't know yet to seen and all other to seen_twice
seen_twice = set( x for x in seq if x in seen or seen_add(x) )
# turn the set into a list (as requested)
return list( seen_twice )
a = [1,2,3,2,1,5,6,5,5,5]
list_duplicates(a) # yields [1, 2, 5]
Just in case speed matters, here are some timings:
# file: test.py
import collections
def thg435(l):
return [x for x, y in collections.Counter(l).items() if y > 1]
def moooeeeep(l):
seen = set()
seen_add = seen.add
# adds all elements it doesn't know yet to seen and all other to seen_twice
seen_twice = set( x for x in l if x in seen or seen_add(x) )
# turn the set into a list (as requested)
return list( seen_twice )
def RiteshKumar(l):
return list(set([x for x in l if l.count(x) > 1]))
def JohnLaRooy(L):
seen = set()
seen2 = set()
seen_add = seen.add
seen2_add = seen2.add
for item in L:
if item in seen:
seen2_add(item)
else:
seen_add(item)
return list(seen2)
l = [1,2,3,2,1,5,6,5,5,5]*100
Here are the results: (well done @JohnLaRooy!)
$ python -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
10000 loops, best of 3: 74.6 usec per loop
$ python -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
10000 loops, best of 3: 91.3 usec per loop
$ python -mtimeit -s 'import test' 'test.thg435(test.l)'
1000 loops, best of 3: 266 usec per loop
$ python -mtimeit -s 'import test' 'test.RiteshKumar(test.l)'
100 loops, best of 3: 8.35 msec per loop
Interestingly, besides the timings itself, also the ranking slightly changes when pypy is used. Most interestingly, the Counter-based approach benefits hugely from pypy's optimizations, whereas the method caching approach I have suggested seems to have almost no effect.
$ pypy -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
100000 loops, best of 3: 17.8 usec per loop
$ pypy -mtimeit -s 'import test' 'test.thg435(test.l)'
10000 loops, best of 3: 23 usec per loop
$ pypy -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
10000 loops, best of 3: 39.3 usec per loop
Apparantly this effect is related to the "duplicatedness" of the input data. I have set l = [random.randrange(1000000) for i in xrange(10000)]
and got these results:
$ pypy -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
1000 loops, best of 3: 495 usec per loop
$ pypy -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
1000 loops, best of 3: 499 usec per loop
$ pypy -mtimeit -s 'import test' 'test.thg435(test.l)'
1000 loops, best of 3: 1.68 msec per loop
To remove duplicates use set(a)
. To print duplicates, something like:
a = [1,2,3,2,1,5,6,5,5,5]
import collections
print([item for item, count in collections.Counter(a).items() if count > 1])
## [1, 2, 5]
Note that Counter
is not particularly efficient (timings) and probably overkill here. set
will perform better. This code computes a list of unique elements in the source order:
seen = set()
uniq = []
for x in a:
if x not in seen:
uniq.append(x)
seen.add(x)
or, more concisely:
seen = set()
uniq = [x for x in a if x not in seen and not seen.add(x)]
I don't recommend the latter style, because it is not obvious what not seen.add(x)
is doing (the set add()
method always returns None
, hence the need for not
).
To compute the list of duplicated elements without libraries:
seen = set()
dupes = []
for x in a:
if x in seen:
dupes.append(x)
else:
seen.add(x)
or, more concisely:
seen = set()
dupes = [x for x in a if x in seen or seen.add(x)]
If list elements are not hashable, you cannot use sets/dicts and have to resort to a quadratic time solution (compare each with each). For example:
a = [[1], [2], [3], [1], [5], [3]]
no_dupes = [x for n, x in enumerate(a) if x not in a[:n]]
print no_dupes # [[1], [2], [3], [5]]
dupes = [x for n, x in enumerate(a) if x in a[:n]]
print dupes # [[1], [3]]