How do I find the lat/long that is x km north of a given lat/long?

I have a very similar piece of code. It got me very close results when compared to another implementation.

I think the problem with yours is that you are using "distance" as linear distance in meters instead of angular distance in radians.

/// <summary>
/// Calculates the end-point from a given source at a given range (meters) and bearing (degrees).
/// This methods uses simple geometry equations to calculate the end-point.
/// </summary>
/// <param name="source">Point of origin</param>
/// <param name="range">Range in meters</param>
/// <param name="bearing">Bearing in degrees</param>
/// <returns>End-point from the source given the desired range and bearing.</returns>
public static LatLonAlt CalculateDerivedPosition(LatLonAlt source, double range, double bearing)
{
    double latA = source.Latitude * UnitConstants.DegreesToRadians;
    double lonA = source.Longitude * UnitConstants.DegreesToRadians;
    double angularDistance = range / GeospatialConstants.EarthRadius;
    double trueCourse = bearing * UnitConstants.DegreesToRadians;

    double lat = Math.Asin(
        Math.Sin(latA) * Math.Cos(angularDistance) + 
        Math.Cos(latA) * Math.Sin(angularDistance) * Math.Cos(trueCourse));

    double dlon = Math.Atan2(
        Math.Sin(trueCourse) * Math.Sin(angularDistance) * Math.Cos(latA), 
        Math.Cos(angularDistance) - Math.Sin(latA) * Math.Sin(lat));

    double lon = ((lonA + dlon + Math.PI) % UnitConstants.TwoPi) - Math.PI;

    return new LatLonAlt(
        lat * UnitConstants.RadiansToDegrees, 
        lon * UnitConstants.RadiansToDegrees, 
        source.Altitude);
}

Where

public const double EarthRadius = 6378137.0;   //  WGS-84 ellipsoid parameters

and LatLonAlt is in degrees/meters (conversion takes place internally). Adjust as needed.

I assume you can figure out what the value for UnitConstants.DegreesToRadians is :)


I'm not sure if I'm missing something here, but I think the question could be rephrased as, "I have a lat/lon point, and I want to find the point x meters north and x meters south of that point."

If that's the question then you don't need to find a new longitude (which makes things simpler), you just need a new latitude. A degree of latitude is roughly 60 nautical miles long anywhere on Earth, and a nautical mile is 1,852 meters. So, for new latitudes x meters north and south:

north_lat = lat + x / (1852 * 60)
north_lat = min(north_lat, 90)

south_lat = lat - x / (1852 * 60)
south_lat = max(south_lat, -90)

This is not completely accurate because the Earth is not a perfect sphere with exactly 60 nautical miles between each degree of latitude. However, the other answers assume that lines of latitude are equidistant, so I'm assuming you don't care about that. If you're interested in how much error that might introduce, there is a nice table on Wikipedia that shows "Surface distance per 1° change in latitude" for different latitudes at this link:

http://en.wikipedia.org/wiki/Latitude#Degree_length


For lazy people, (like me ;) ) a copy-paste solution, Erich Mirabal's version with very minor changes:

using System.Device.Location; // add reference to System.Device.dll
public static class GeoUtils
{
    /// <summary>
    /// Calculates the end-point from a given source at a given range (meters) and bearing (degrees).
    /// This methods uses simple geometry equations to calculate the end-point.
    /// </summary>
    /// <param name="source">Point of origin</param>
    /// <param name="range">Range in meters</param>
    /// <param name="bearing">Bearing in degrees</param>
    /// <returns>End-point from the source given the desired range and bearing.</returns>
    public static GeoCoordinate CalculateDerivedPosition(this GeoCoordinate source, double range, double bearing)
    {
        var latA = source.Latitude * DegreesToRadians;
        var lonA = source.Longitude * DegreesToRadians;
        var angularDistance = range / EarthRadius;
        var trueCourse = bearing * DegreesToRadians;

        var lat = Math.Asin(
            Math.Sin(latA) * Math.Cos(angularDistance) +
            Math.Cos(latA) * Math.Sin(angularDistance) * Math.Cos(trueCourse));

        var dlon = Math.Atan2(
            Math.Sin(trueCourse) * Math.Sin(angularDistance) * Math.Cos(latA),
            Math.Cos(angularDistance) - Math.Sin(latA) * Math.Sin(lat));

        var lon = ((lonA + dlon + Math.PI) % (Math.PI*2)) - Math.PI;

        return new GeoCoordinate(
            lat * RadiansToDegrees,
            lon * RadiansToDegrees,
            source.Altitude);
    }

    private const double DegreesToRadians = Math.PI/180.0;
    private const double RadiansToDegrees = 180.0/ Math.PI;
    private const double EarthRadius = 6378137.0;
}

Usage:

[TestClass]
public class CalculateDerivedPositionUnitTest
{
    [TestMethod]
    public void OneDegreeSquareAtEquator()
    {
        var center = new GeoCoordinate(0, 0);
        var radius = 111320;
        var southBound = center.CalculateDerivedPosition(radius, -180);
        var westBound = center.CalculateDerivedPosition(radius, -90);
        var eastBound = center.CalculateDerivedPosition(radius, 90);
        var northBound = center.CalculateDerivedPosition(radius, 0);

        Console.Write($"leftBottom: {southBound.Latitude} , {westBound.Longitude} rightTop: {northBound.Latitude} , {eastBound.Longitude}");
    }
}

Tags:

C#

Geometry

Gis