how do I remove rows with duplicate values of columns in pandas data frame?

Using drop_duplicates with subset with list of columns to check for duplicates on and keep='first' to keep first of duplicates.

If dataframe is:

df = pd.DataFrame({'Column1': ["'cat'", "'toy'", "'cat'"],
                   'Column2': ["'bat'", "'flower'", "'bat'"],
                   'Column3': ["'xyz'", "'abc'", "'lmn'"]})
print(df)

Result:

  Column1   Column2 Column3
0   'cat'     'bat'   'xyz'
1   'toy'  'flower'   'abc'
2   'cat'     'bat'   'lmn'

Then:

result_df = df.drop_duplicates(subset=['Column1', 'Column2'], keep='first')
print(result_df)

Result:

  Column1   Column2 Column3
0   'cat'     'bat'   'xyz'
1   'toy'  'flower'   'abc'

import pandas as pd

df = pd.DataFrame({"Column1":["cat", "dog", "cat"],
                    "Column2":[1,1,1],
                    "Column3":["C","A","B"]})

df = df.drop_duplicates(subset=['Column1'], keep='first')
print(df)

Tags:

Python

Pandas