How do I select certain columns of a 2D tensor in TensorFlow?
There is a function named tf.nn.embedding_lookup(params, ind)
which retrieves the rows of the params
tensor.
To achieve what you want, we can first transpose the tensor t
from which you want to select certain columns from. Then look up the rows of tf.transpose(t)
(columns of t
). After the selection, we transpose the result back.
import tensorflow as tf
t = tf.constant([[1, 2, 3],
[4, 5, 6]])
ind = tf.constant([0, 2])
result = tf.transpose(tf.nn.embedding_lookup(tf.transpose(t), ind))
with tf.Session() as sess:
print(sess.run(result))
Meanwhile the gather
method has an axis
parameter.
import tensorflow as tf
params = tf.constant([[1,2,3],[4,5,6]])
indices = [0,2]
op = tf.gather(params, indices, axis=1)
produces the output
[[1 3]
[4 6]]
So far, I created a workaround by flattening the input and using gather
:
def gather_cols(params, indices, name=None):
"""Gather columns of a 2D tensor.
Args:
params: A 2D tensor.
indices: A 1D tensor. Must be one of the following types: ``int32``, ``int64``.
name: A name for the operation (optional).
Returns:
A 2D Tensor. Has the same type as ``params``.
"""
with tf.op_scope([params, indices], name, "gather_cols") as scope:
# Check input
params = tf.convert_to_tensor(params, name="params")
indices = tf.convert_to_tensor(indices, name="indices")
try:
params.get_shape().assert_has_rank(2)
except ValueError:
raise ValueError('\'params\' must be 2D.')
try:
indices.get_shape().assert_has_rank(1)
except ValueError:
raise ValueError('\'indices\' must be 1D.')
# Define op
p_shape = tf.shape(params)
p_flat = tf.reshape(params, [-1])
i_flat = tf.reshape(tf.reshape(tf.range(0, p_shape[0]) * p_shape[1],
[-1, 1]) + indices, [-1])
return tf.reshape(tf.gather(p_flat, i_flat),
[p_shape[0], -1])
Which for:
params = tf.constant([[1, 2, 3],
[4, 5, 6]])
indices = [0, 2]
op = gather_cols(params, indices)
produces the expected output:
[[1 3]
[4 6]]