How do I solve the 'classic' knapsack algorithm recursively?

I had to do this for my homework so I tested all of the above codes (except for the Python one), but none of them work for every corner case.

This is my code, it works for every corner case.

static int[] values = new int[] {894, 260, 392, 281, 27};
static int[] weights = new int[] {8, 6, 4, 0, 21};
static int W = 30;

private static int knapsack(int i, int W) {
    if (i < 0) {
        return 0;
    }
    if (weights[i] > W) {
        return knapsack(i-1, W);
    } else {
        return Math.max(knapsack(i-1, W), knapsack(i-1, W - weights[i]) + values[i]);
    }
}

public static void main(String[] args) {
System.out.println(knapsack(values.length - 1, W));}

It is not optimized, the recursion will kill you, but you can use simple memoization to fix that. Why is my code short, correct and simple to understand? I just checked out the mathematical definition of the 0-1 Knapsack problem http://en.wikipedia.org/wiki/Knapsack_problem#Dynamic_programming


The problem is basically modified version of classic knapsack problem for simplicity (there are no values/benefits corresponding to weights) (for actual: http://en.wikipedia.org/wiki/Knapsack_problem, 0/1 Knapsack - A few clarification on Wiki's pseudocode, How to understand the knapsack problem is NP-complete?, Why is the knapsack problem pseudo-polynomial?, http://www.geeksforgeeks.org/dynamic-programming-set-10-0-1-knapsack-problem/).

Here are five versions of solving this in c#:

version1: Using dynamic programming (tabulated - by eagerly finding solutions for all sum problems to get to final one) - O(n * W)

version 2: Using DP but memoization version (lazy - just finding solutions for whatever is needed)

version 3 Using recursion to demonstrate overlapped sub problems and optimal sub structure

version 4 Recursive (brute force) - basically accepted answer

version 5 Using stack of #4 (demonstrating removing tail recursion)

version1: Using dynamic programming (tabulated - by eagerly finding solutions for all sum problems to get to final one) - O(n * W)

public bool KnapsackSimplified_DP_Tabulated_Eager(int[] weights, int W)
        {
            this.Validate(weights, W);
            bool[][] DP_Memoization_Cache = new bool[weights.Length + 1][];
            for (int i = 0; i <= weights.Length; i++)
            {
                DP_Memoization_Cache[i] = new bool[W + 1];
            }
            for (int i = 1; i <= weights.Length; i++)
            {
                for (int w = 0; w <= W; w++)
                {
                    /// f(i, w) determines if weight 'w' can be accumulated using given 'i' number of weights
                    /// f(i, w) = False if i <= 0
                    ///           OR True if weights[i-1] == w
                    ///           OR f(i-1, w) if weights[i-1] > w
                    ///           OR f(i-1, w) || f(i-1, w-weights[i-1])
                    if(weights[i-1] == w)
                    {
                        DP_Memoization_Cache[i][w] = true;
                    }
                    else
                    {
                        DP_Memoization_Cache[i][w] = DP_Memoization_Cache[i - 1][w];
                        if(!DP_Memoization_Cache[i][w])
                        {
                            if (w > weights[i - 1])
                            {
                                DP_Memoization_Cache[i][w] = DP_Memoization_Cache[i - 1][w - weights[i - 1]];
                            }
                        }
                    }
                }
            }
            return DP_Memoization_Cache[weights.Length][W];
        }

version 2: Using DP but memorization version (lazy - just finding solutions for whatever is needed)

/// <summary>
        /// f(i, w) determines if weight 'w' can be accumulated using given 'i' number of weights
        /// f(i, w) = False if i < 0
        ///           OR True if weights[i] == w
        ///           OR f(i-1, w) if weights[i] > w
        ///           OR f(i-1, w) || f(i-1, w-weights[i])
        /// </summary>
        /// <param name="rowIndexOfCache">
        /// Note, its index of row in the cache
        /// index of given weifhts is indexOfCahce -1 (as it starts from 0)
        /// </param>
        bool KnapsackSimplified_DP_Memoization_Lazy(int[] weights, int w, int i_rowIndexOfCache, bool?[][] DP_Memoization_Cache)
        {
            if(i_rowIndexOfCache < 0)
            {
                return false;
            }
            if(DP_Memoization_Cache[i_rowIndexOfCache][w].HasValue)
            {
                return DP_Memoization_Cache[i_rowIndexOfCache][w].Value;
            }
            int i_weights_index = i_rowIndexOfCache - 1;
            if (weights[i_weights_index] == w)
            {
                //we can just use current weight, so no need to call other recursive methods
                //just return true
                DP_Memoization_Cache[i_rowIndexOfCache][w] = true;
                return true;
            }
            //see if W, can be achieved without using weights[i]
            bool flag = this.KnapsackSimplified_OverlappedSubPromblems_OptimalSubstructure(weights,
                w, i_rowIndexOfCache - 1);
            DP_Memoization_Cache[i_rowIndexOfCache][w] = flag;
            if (flag)
            {
                return true;
            }
            if (w > weights[i_weights_index])
            {
                //see if W-weight[i] can be achieved with rest of the weights
                flag = this.KnapsackSimplified_OverlappedSubPromblems_OptimalSubstructure(weights,
                    w - weights[i_weights_index], i_rowIndexOfCache - 1);
                DP_Memoization_Cache[i_rowIndexOfCache][w] = flag;
            }
            return flag;
        }

where

public bool KnapsackSimplified_DP_Memoization_Lazy(int[] weights, int W)
        {
            this.Validate(weights, W);
            //note 'row' index represents the number of weights been used
            //note 'colum' index represents the weight that can be achived using given 
            //number of weights 'row'
            bool?[][] DP_Memoization_Cache = new bool?[weights.Length+1][];
            for(int i = 0; i<=weights.Length; i++)
            {
                DP_Memoization_Cache[i] = new bool?[W + 1];
                for(int w=0; w<=W; w++)
                {
                    if(i != 0)
                    {
                        DP_Memoization_Cache[i][w] = null;
                    }
                    else
                    {
                        //can't get to weight 'w' using none of the given weights
                        DP_Memoization_Cache[0][w] = false;
                    }
                }
                DP_Memoization_Cache[i][0] = false;
            }
            bool f = this.KnapsackSimplified_DP_Memoization_Lazy(
                weights, w: W, i_rowIndexOfCache: weights.Length, DP_Memoization_Cache: DP_Memoization_Cache);
            Assert.IsTrue(f == DP_Memoization_Cache[weights.Length][W]);
            return f;
        }

version 3 Identifying overlapped sub problems and optimal sub structure

/// <summary>
        /// f(i, w) = False if i < 0
        ///           OR True if weights[i] == w
        ///           OR f(i-1, w) if weights[i] > w
        ///           OR f(i-1, w) || f(i-1, w-weights[i])
        /// </summary>
        public bool KnapsackSimplified_OverlappedSubPromblems_OptimalSubstructure(int[] weights, int W, int i)
        {
            if(i<0)
            {
                //no more weights to traverse
                return false;
            }
            if(weights[i] == W)
            {
                //we can just use current weight, so no need to call other recursive methods
                //just return true
                return true;
            }
            //see if W, can be achieved without using weights[i]
            bool flag = this.KnapsackSimplified_OverlappedSubPromblems_OptimalSubstructure(weights,
                W, i - 1);
            if(flag)
            {
                return true;
            }
            if(W > weights[i])
            {
                //see if W-weight[i] can be achieved with rest of the weights
                return this.KnapsackSimplified_OverlappedSubPromblems_OptimalSubstructure(weights, W - weights[i], i - 1);
            }
            return false;
        }

where

public bool KnapsackSimplified_OverlappedSubPromblems_OptimalSubstructure(int[] weights, int W)
        {
            this.Validate(weights, W);
            bool f = this.KnapsackSimplified_OverlappedSubPromblems_OptimalSubstructure(weights, W,
                i: weights.Length - 1);
            return f;
        }

version 4 Brute force

private bool KnapsackSimplifiedProblemRecursive(int[] weights, int sum, int currentSum, int index, List<int> itemsInTheKnapsack)
        {
            if (currentSum == sum)
            {
                return true;
            }
            if (currentSum > sum)
            {
                return false;
            }
            if (index >= weights.Length)
            {
                return false;
            }
            itemsInTheKnapsack.Add(weights[index]);
            bool flag = KnapsackSimplifiedProblemRecursive(weights, sum, currentSum: currentSum + weights[index],
                index: index + 1, itemsInTheKnapsack: itemsInTheKnapsack);
            if (!flag)
            {
                itemsInTheKnapsack.Remove(weights[index]);
                flag = KnapsackSimplifiedProblemRecursive(weights, sum, currentSum, index + 1, itemsInTheKnapsack);
            }
            return flag;
        }
        public bool KnapsackRecursive(int[] weights, int sum, out List<int> knapsack)
        {
            if(sum <= 0)
            {
                throw new ArgumentException("sum should be +ve non zero integer");
            }
            knapsack = new List<int>();
            bool fits = KnapsackSimplifiedProblemRecursive(weights, sum, currentSum: 0, index: 0, 
                itemsInTheKnapsack: knapsack);
            return fits;
        }

version 5: Iterative version using stack (note - same complexity - using stack - removing tail recursion)

public bool KnapsackIterativeUsingStack(int[] weights, int sum, out List<int> knapsack)
        {
            sum.Throw("sum", s => s <= 0);
            weights.ThrowIfNull("weights");
            weights.Throw("weights", w => (w.Length == 0)
                                  || w.Any(wi => wi < 0));
            var knapsackIndices = new List<int>();
            knapsack = new List<int>();
            Stack<KnapsackStackNode> stack = new Stack<KnapsackStackNode>();
            stack.Push(new KnapsackStackNode() { sumOfWeightsInTheKnapsack = 0, nextItemIndex = 1 });
            stack.Push(new KnapsackStackNode() { sumOfWeightsInTheKnapsack = weights[0], nextItemIndex = 1, includesItemAtCurrentIndex = true });
            knapsackIndices.Add(0);

            while(stack.Count > 0)
            {
                var top = stack.Peek();
                if(top.sumOfWeightsInTheKnapsack == sum)
                {
                    int count = 0;
                    foreach(var index in knapsackIndices)
                    {
                        var w = weights[index];
                        knapsack.Add(w);
                        count += w;
                    }
                    Debug.Assert(count == sum);
                    return true;
                }
                //basically either of the below three cases, we dont need to traverse/explore adjuscent
                // nodes further
                if((top.nextItemIndex == weights.Length) //we reached end, no need to traverse
                    || (top.sumOfWeightsInTheKnapsack > sum) // last added node should not be there
                    || (top.alreadyExploredAdjuscentItems)) //already visted
                {
                    if (top.includesItemAtCurrentIndex)
                    {
                        Debug.Assert(knapsackIndices.Contains(top.nextItemIndex - 1));
                        knapsackIndices.Remove(top.nextItemIndex - 1);
                    }
                    stack.Pop();
                    continue;
                }

                var node1 = new KnapsackStackNode();
                node1.sumOfWeightsInTheKnapsack = top.sumOfWeightsInTheKnapsack;
                node1.nextItemIndex = top.nextItemIndex + 1;
                stack.Push(node1);

                var node2 = new KnapsackStackNode();
                knapsackIndices.Add(top.nextItemIndex);
                node2.sumOfWeightsInTheKnapsack = top.sumOfWeightsInTheKnapsack + weights[top.nextItemIndex];
                node2.nextItemIndex = top.nextItemIndex + 1;
                node2.includesItemAtCurrentIndex = true;
                stack.Push(node2);

                top.alreadyExploredAdjuscentItems = true;
            }
            return false;
        }

where

class KnapsackStackNode
        {
            public int sumOfWeightsInTheKnapsack;
            public int nextItemIndex;
            public bool alreadyExploredAdjuscentItems;
            public bool includesItemAtCurrentIndex;
        }

And unit tests

[TestMethod]
        public void KnapsackSimpliedProblemTests()
        {
            int[] weights = new int[] { 7, 5, 4, 4, 1 };
            List<int> bag = null;
            bool flag = this.KnapsackSimplifiedProblemIterativeUsingStack(weights, 10, knapsack: out bag);
            Assert.IsTrue(flag);
            Assert.IsTrue(bag.Contains(5));
            Assert.IsTrue(bag.Contains(4));
            Assert.IsTrue(bag.Contains(1));
            Assert.IsTrue(bag.Count == 3);
            flag = this.KnapsackSimplifiedProblemIterativeUsingStack(weights, 3, knapsack: out bag);
            Assert.IsFalse(flag);
            flag = this.KnapsackSimplifiedProblemIterativeUsingStack(weights, 7, knapsack: out bag);
            Assert.IsTrue(flag);
            Assert.IsTrue(bag.Contains(7));
            Assert.IsTrue(bag.Count == 1);
            flag = this.KnapsackSimplifiedProblemIterativeUsingStack(weights, 1, knapsack: out bag);
            Assert.IsTrue(flag);
            Assert.IsTrue(bag.Contains(1));
            Assert.IsTrue(bag.Count == 1);

            flag = this.KnapsackSimplified_DP_Tabulated_Eager(weights, 10);
            Assert.IsTrue(flag);
            flag = this.KnapsackSimplified_DP_Tabulated_Eager(weights, 3);
            Assert.IsFalse(flag);
            flag = this.KnapsackSimplified_DP_Tabulated_Eager(weights, 7);
            Assert.IsTrue(flag);
            flag = this.KnapsackSimplified_DP_Tabulated_Eager(weights, 1);
            Assert.IsTrue(flag);

            flag = this.KnapsackSimplified_DP_Memoization_Lazy(weights, 10);
            Assert.IsTrue(flag);
            flag = this.KnapsackSimplified_DP_Memoization_Lazy(weights, 3);
            Assert.IsFalse(flag);
            flag = this.KnapsackSimplified_DP_Memoization_Lazy(weights, 7);
            Assert.IsTrue(flag);
            flag = this.KnapsackSimplified_DP_Memoization_Lazy(weights, 1);
            Assert.IsTrue(flag);

            flag = this.KnapsackSimplified_OverlappedSubPromblems_OptimalSubstructure(weights, 10);
            Assert.IsTrue(flag);
            flag = this.KnapsackSimplified_OverlappedSubPromblems_OptimalSubstructure(weights, 3);
            Assert.IsFalse(flag);
            flag = this.KnapsackSimplified_OverlappedSubPromblems_OptimalSubstructure(weights, 7);
            Assert.IsTrue(flag);
            flag = this.KnapsackSimplified_OverlappedSubPromblems_OptimalSubstructure(weights, 1);
            Assert.IsTrue(flag);


            flag = this.KnapsackRecursive(weights, 10, knapsack: out bag);
            Assert.IsTrue(flag);
            Assert.IsTrue(bag.Contains(5));
            Assert.IsTrue(bag.Contains(4));
            Assert.IsTrue(bag.Contains(1));
            Assert.IsTrue(bag.Count == 3);
            flag = this.KnapsackRecursive(weights, 3, knapsack: out bag);
            Assert.IsFalse(flag);
            flag = this.KnapsackRecursive(weights, 7, knapsack: out bag);
            Assert.IsTrue(flag);
            Assert.IsTrue(bag.Contains(7));
            Assert.IsTrue(bag.Count == 1);
            flag = this.KnapsackRecursive(weights, 1, knapsack: out bag);
            Assert.IsTrue(flag);
            Assert.IsTrue(bag.Contains(1));
            Assert.IsTrue(bag.Count == 1);

            weights = new int[] { 11, 8, 7, 6, 5 };
            flag = this.KnapsackSimplifiedProblemIterativeUsingStack(weights, 20, knapsack: out bag);
            Assert.IsTrue(bag.Contains(8));
            Assert.IsTrue(bag.Contains(7));
            Assert.IsTrue(bag.Contains(5));
            Assert.IsTrue(bag.Count == 3);
            flag = this.KnapsackSimplifiedProblemIterativeUsingStack(weights, 27, knapsack: out bag);
            Assert.IsFalse(flag);
            flag = this.KnapsackSimplifiedProblemIterativeUsingStack(weights, 11, knapsack: out bag);
            Assert.IsTrue(flag);
            Assert.IsTrue(bag.Contains(11));
            Assert.IsTrue(bag.Count == 1);
            flag = this.KnapsackSimplifiedProblemIterativeUsingStack(weights, 5, knapsack: out bag);
            Assert.IsTrue(flag);
            Assert.IsTrue(bag.Contains(5));
            Assert.IsTrue(bag.Count == 1);

            flag = this.KnapsackRecursive(weights, 20, knapsack: out bag);
            Assert.IsTrue(bag.Contains(8));
            Assert.IsTrue(bag.Contains(7));
            Assert.IsTrue(bag.Contains(5));
            Assert.IsTrue(bag.Count == 3);
            flag = this.KnapsackRecursive(weights, 27, knapsack: out bag);
            Assert.IsFalse(flag);
            flag = this.KnapsackRecursive(weights, 11, knapsack: out bag);
            Assert.IsTrue(flag);
            Assert.IsTrue(bag.Contains(11));
            Assert.IsTrue(bag.Count == 1);
            flag = this.KnapsackRecursive(weights, 5, knapsack: out bag);
            Assert.IsTrue(flag);
            Assert.IsTrue(bag.Contains(5));
            Assert.IsTrue(bag.Count == 1);
        }

What did you try?

The idea, given the problem you stated (which specifies we must use recursion) is simple: for each item that you can take, see if it's better to take it or not. So there are only two possible path:

  1. you take the item
  2. you don't take it

When you take the item, you remove it from your list and you decrease the capacity by the weight of the item.

When you don't take the item, you remove if from you list but you do not decrease the capacity.

Sometimes it helps to print what the recursive calls may look like. In this case, it could look like this:

Calling 11 8 7 6 5  with cap: 20
 +Calling 8 7 6 5  with cap: 20
 |  Calling 7 6 5  with cap: 20
 |    Calling 6 5  with cap: 20
 |      Calling 5  with cap: 20
 |      Result: 5
 |      Calling 5  with cap: 14
 |      Result: 5
 |    Result: 11
 |    Calling 6 5  with cap: 13
 |      Calling 5  with cap: 13
 |      Result: 5
 |      Calling 5  with cap: 7
 |      Result: 5
 |    Result: 11
 |  Result: 18
 |  Calling 7 6 5  with cap: 12
 |    Calling 6 5  with cap: 12
 |      Calling 5  with cap: 12
 |      Result: 5
 |      Calling 5  with cap: 6
 |      Result: 5
 |    Result: 11
 |    Calling 6 5  with cap: 5
 |      Calling 5  with cap: 5
 |      Result: 5
 |    Result: 5
 |  Result: 12
 +Result: 20
  Calling 8 7 6 5  with cap: 9
    Calling 7 6 5  with cap: 9
      Calling 6 5  with cap: 9
        Calling 5  with cap: 9
        Result: 5
        Calling 5  with cap: 3
        Result: 0
      Result: 6
      Calling 6 5  with cap: 2
        Calling 5  with cap: 2
        Result: 0
      Result: 0
    Result: 7
    Calling 7 6 5  with cap: 1
      Calling 6 5  with cap: 1
        Calling 5  with cap: 1
        Result: 0
      Result: 0
    Result: 0
  Result: 8
Result: 20

I did on purpose show the call to [8 7 6 5] with a capacity of 20, which gives a result of 20 (8 + 7 + 5).

Note that [8 7 6 5] is called twice: once with a capacity of 20 (because we didn't take 11) and once with a capacity of 9 (because with did take 11).

So the path to the solution:

11 not taken, calling [8 7 6 5] with a capacity of 20

8 taken, calling [7 6 5] with a capacity of 12 (20 - 8)

7 taken, calling [6 5] with a capacity of 5 (12 - 7)

6 not taken, calling [5] with a capacity of 5

5 taken, we're at zero.

The actual method in Java can fit in very few lines of code.

Since this is obviously homework, I'll just help you with a skeleton:

private int ukp( final int[] ar, final int cap ) {
    if ( ar.length == 1 ) {
        return ar[0] <= cap ? ar[0] : 0;
    } else {
        final int[] nar = new int[ar.length-1];
        System.arraycopy(ar, 1, nar, 0, nar.length);
        fint int item = ar[0];
        if ( item < cap ) {
            final int left = ...  // fill me: we're not taking the item
            final int took = ...  // fill me: we're taking the item
            return Math.max(took,left);
        } else {
            return ... // fill me: we're not taking the item
        }
    }
}

I did copy the array to a new array, which is less efficient (but anyway recursion is not the way to go here if you seek performance), but more "functional".