How do you convert a byte array to a hexadecimal string in C?
For completude, you can also easily do it without calling any heavy library function (no snprintf, no strcat, not even memcpy). It can be useful, say if you are programming some microcontroller or OS kernel where libc is not available.
Nothing really fancy you can find similar code around if you google for it. Really it's not much more complicated than calling snprintf and much faster.
#include <stdio.h>
int main(){
unsigned char buf[] = {0, 1, 10, 11};
/* target buffer should be large enough */
char str[12];
unsigned char * pin = buf;
const char * hex = "0123456789ABCDEF";
char * pout = str;
int i = 0;
for(; i < sizeof(buf)-1; ++i){
*pout++ = hex[(*pin>>4)&0xF];
*pout++ = hex[(*pin++)&0xF];
*pout++ = ':';
}
*pout++ = hex[(*pin>>4)&0xF];
*pout++ = hex[(*pin)&0xF];
*pout = 0;
printf("%s\n", str);
}
Here is another slightly shorter version. It merely avoid intermediate index variable i and duplicating laste case code (but the terminating character is written two times).
#include <stdio.h>
int main(){
unsigned char buf[] = {0, 1, 10, 11};
/* target buffer should be large enough */
char str[12];
unsigned char * pin = buf;
const char * hex = "0123456789ABCDEF";
char * pout = str;
for(; pin < buf+sizeof(buf); pout+=3, pin++){
pout[0] = hex[(*pin>>4) & 0xF];
pout[1] = hex[ *pin & 0xF];
pout[2] = ':';
}
pout[-1] = 0;
printf("%s\n", str);
}
Below is yet another version to answer to a comment saying I used a "trick" to know the size of the input buffer. Actually it's not a trick but a necessary input knowledge (you need to know the size of the data that you are converting). I made this clearer by extracting the conversion code to a separate function. I also added boundary check code for target buffer, which is not really necessary if we know what we are doing.
#include <stdio.h>
void tohex(unsigned char * in, size_t insz, char * out, size_t outsz)
{
unsigned char * pin = in;
const char * hex = "0123456789ABCDEF";
char * pout = out;
for(; pin < in+insz; pout +=3, pin++){
pout[0] = hex[(*pin>>4) & 0xF];
pout[1] = hex[ *pin & 0xF];
pout[2] = ':';
if (pout + 3 - out > outsz){
/* Better to truncate output string than overflow buffer */
/* it would be still better to either return a status */
/* or ensure the target buffer is large enough and it never happen */
break;
}
}
pout[-1] = 0;
}
int main(){
enum {insz = 4, outsz = 3*insz};
unsigned char buf[] = {0, 1, 10, 11};
char str[outsz];
tohex(buf, insz, str, outsz);
printf("%s\n", str);
}
printf("%02X:%02X:%02X:%02X", buf[0], buf[1], buf[2], buf[3]);
For a more generic way:
int i;
for (i = 0; i < x; i++)
{
if (i > 0) printf(":");
printf("%02X", buf[i]);
}
printf("\n");
To concatenate to a string, there are a few ways you can do this. I'd probably keep a pointer to the end of the string and use sprintf. You should also keep track of the size of the array to make sure it doesn't get larger than the space allocated:
int i;
char* buf2 = stringbuf;
char* endofbuf = stringbuf + sizeof(stringbuf);
for (i = 0; i < x; i++)
{
/* i use 5 here since we are going to add at most
3 chars, need a space for the end '\n' and need
a null terminator */
if (buf2 + 5 < endofbuf)
{
if (i > 0)
{
buf2 += sprintf(buf2, ":");
}
buf2 += sprintf(buf2, "%02X", buf[i]);
}
}
buf2 += sprintf(buf2, "\n");
Similar answers already exist above, I added this one to explain how the following line of code works exactly:
ptr += sprintf(ptr, "%02X", buf[i])
It's quiet tricky and not easy to understand, I put the explanation in the comments below:
uint8 buf[] = {0, 1, 10, 11};
/* Allocate twice the number of bytes in the "buf" array because each byte would
* be converted to two hex characters, also add an extra space for the terminating
* null byte.
* [size] is the size of the buf array */
char output[(size * 2) + 1];
/* pointer to the first item (0 index) of the output array */
char *ptr = &output[0];
int i;
for (i = 0; i < size; i++) {
/* "sprintf" converts each byte in the "buf" array into a 2 hex string
* characters appended with a null byte, for example 10 => "0A\0".
*
* This string would then be added to the output array starting from the
* position pointed at by "ptr". For example if "ptr" is pointing at the 0
* index then "0A\0" would be written as output[0] = '0', output[1] = 'A' and
* output[2] = '\0'.
*
* "sprintf" returns the number of chars in its output excluding the null
* byte, in our case this would be 2. So we move the "ptr" location two
* steps ahead so that the next hex string would be written at the new
* location, overriding the null byte from the previous hex string.
*
* We don't need to add a terminating null byte because it's been already
* added for us from the last hex string. */
ptr += sprintf(ptr, "%02X", buf[i]);
}
printf("%s\n", output);