How many solutions are there to $x_{1} + x_{2} + x_{3} + x_{4} = 15$
Substituting $$\begin{cases} y_1=x_1-1\\ y_2=x_2-2\\ y_3=x_3-7\\ y_4=x_4-2 \end{cases}$$ your problem becomes equivalent to finding $y_1,\ldots,y_4$ satisfying $$\begin{split}0&\leq y_1\leq 3,\\0&\leq y_2\leq 3,\\0&\leq y_3,\\0&\leq y_4\end{split}$$ and $$y_1+y_2+y_3+y_4=3.$$ The solution to this are $$y=(y_1,\ldots,y_4)=(3,0,0,0)$$ (and other permutations, making up a total of $4$), $$y=(2,1,0,0)$$ (and other permutations, making up a total of $4!/2!=12$), and $$y=(1,1,1,0)$$ (and other permutations, making up $4$). The number of solutions then is $$4+12+4=20.$$
Write $y_1=x_1-1$, $y_2=x_2-2$, $y_3-7$ and $y_4-2$, then $y_i \geq 0$, $y_1,y_2\leq 3$ and $$y_1+y_2+y_3+y_4 = 3$$
But then $y_3$ and $y_4$ can not be 4 or more. So $y_1,y_2\leq 3$ is not actual restriction here. By stars and bars method we have $${6\choose 3}=20$$ solution.